

L'analyse génétique de l'hypercholestérolémie familiale

Dr Thomas von Känel, Chef du Service de Génétique médicale 072 603 48 50 / thomas.vonkaenel@hopitalvs.ch

Journée scientifique d'automne de l'ARL 10 septembre 2019

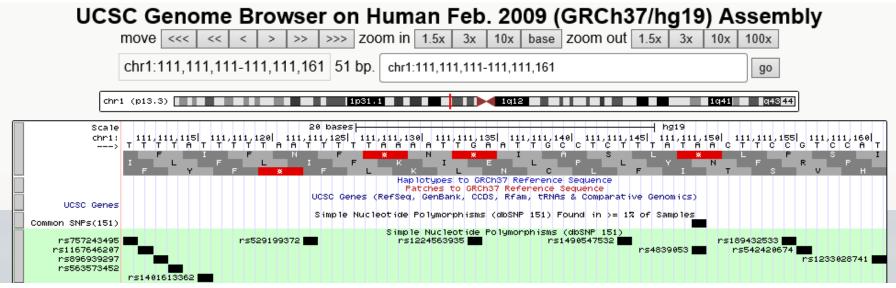
- La diversité génétique
- L'hypercholestérolémie familiale (FH)
- · Le test génétique : remboursement, technique
- Interprétation des variants
- L'hypercholestérolémie polygénique

Nous sommes tous les mêmes

Nous sommes tous les mêmes – et tous différents

museum.wa.gov.au 10 septembre 2019

Nous sommes tous les mêmes – et tous différents



50 pb choisi à l'hasard : 13 single nucleotide variants (SNV) :

- La diversité dans les bases de données :
- ClinVar : 503'065 variants uniques
- gnomAD: 229 mio SNVs et 33 mio indels

La diversité dans la maladie et la mort

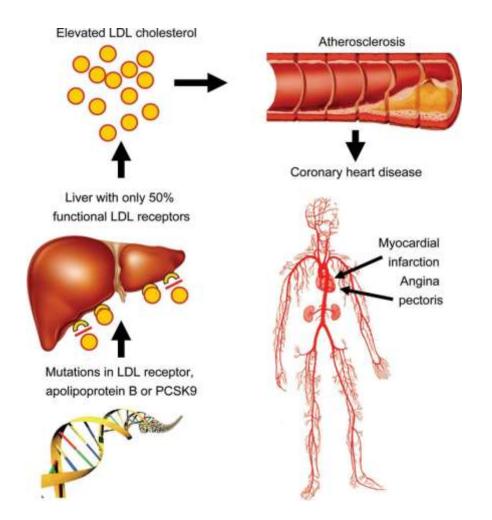
Maladies et problèmes de santé

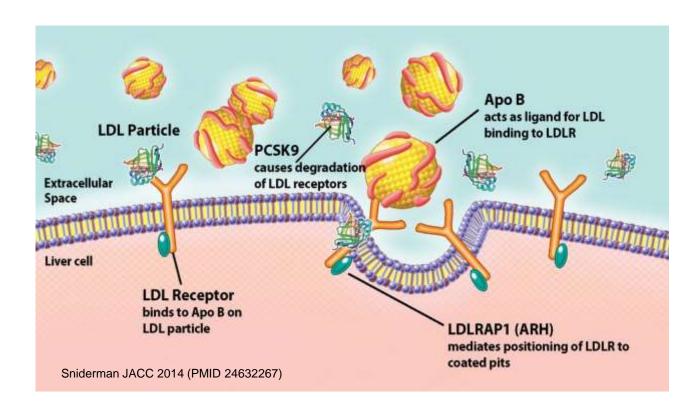
Les 12 derniers mois, en % (2017)	Hommes	Femmes
Arthrose rhumatismale	10,2	18,6
Rhume des foins ou autres allergies	22,2	25,7
Dépression nerveuse	5,3	7,9
Asthme	4,6	5,6
Ostéoporose	0,8	5,4
Cancer, tumeur	1,8	1,5
Bronchite chronique, emphysème	2,1	2,6
Infarctus du myocarde	0,7	0,3
Attaque	0.4	0.4

Principales causes de décès

2016	Nombre d	e décès
	Hommes	Femmes
Toutes les causes de décès	31 283	33 681
Maladies infectieuses	359	393
> Tumeurs malignes	9 371	7 830
Diabète sucré	573	701
Démence	1 789	3 975
> Maladies cardiovasculaires	9 357	11 355
Maladies de l'appareil respiratoire	2 183	1 925
Cirrhose du foie alcoolique	312	129
> Accidents et morts violentes	2 173	1 542

- Phénotype :
- Cholestérol LDL fortement augmenté
- Xanthomes tendineux / cutanés ; arc cornéen précoce (< 45 ans)
- Maladie cardiovasculaire précoce (hommes non-traités : 50 % de risque d'événement cardiovasculaire avant l'âge de 50 ans)
- Traitement :
- Statines, inhibiteurs PCSK9
- Hygiène de vie
- Hérédité : autosomique-dominant
- Fréquence : environ 1:250





Hypercholestérolémie familiale : pathophysiologie

Variants pathogènes dans LDLR, APOB et PCSK9

Nordestgaard EHJ 2013 (PMID 23956253)

Hôpital du Vala Spital Wallis

Hypercholestérolémie familiale : diagnostic

Table 1. Dutch Lipid Clinic Network criteria for the diagnosis of heterozygous familial hypercholesterolemia (hFH).^{33,34}

Criteria		Score
Family history	First-degree adult relative with • Premature coronary and/or vascular disease (male < 55 years; female < 60 years) • LDL-C > 95th percentile for age and gender • Tendon xanthomata and/or arcus cornealis	1 1 2
	First-degree relative < 18 years with LDL-C > 95th percentile for age and gender	2
Clinical history	Patient with premature IHD (ages as above)	2
	Patient with other premature vascular and/or cerebrovascular disease (ages as above)	1
Physical examination	Tendon xanthomata Arcus cornealis prior to age 45	6 4
Laboratory analysis	LDL-C (mmol/L) • ≥8.5 • 6.5–8.4 • 5.0–6.4 • 4.0–4.9	8 5 3 1
DNA analysis	Genetic test results confirming functional mutation in LDLR, APOB, or PCSK9 gene	8

Critères du Dutch Lipid Clinic Network (DLCN)

Interprétation :

> 8 points : HF vraisemblable

6-8 points : HF probable

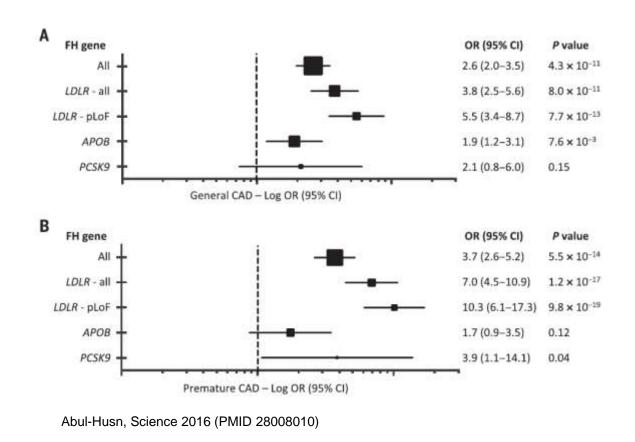
3-5 points: HF possible

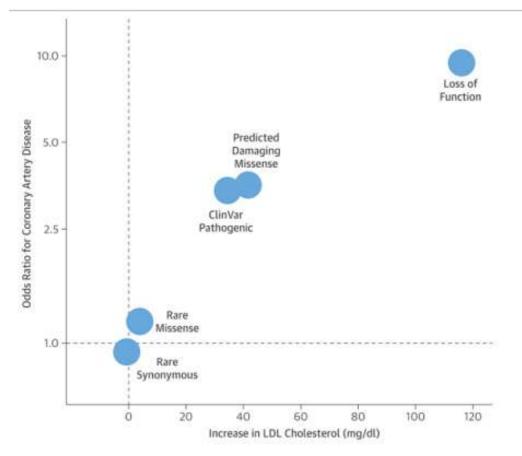
< 3 points : pas de HF

Calculateur sur:

www.gsla.ch

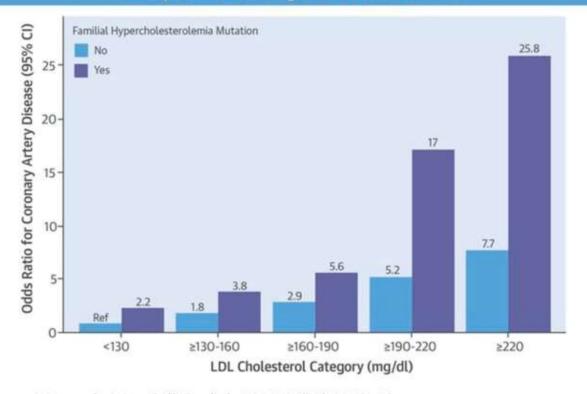
LDL-C = low-density lipoprotein cholesterol; IHD = ischemic heart disease; LDLR = low-density lipoprotein receptor; APOB = apolipoprotein B-100; PCSK9 = proprotein convertase subtilisin/kexin9




Diagnostic : test génétique

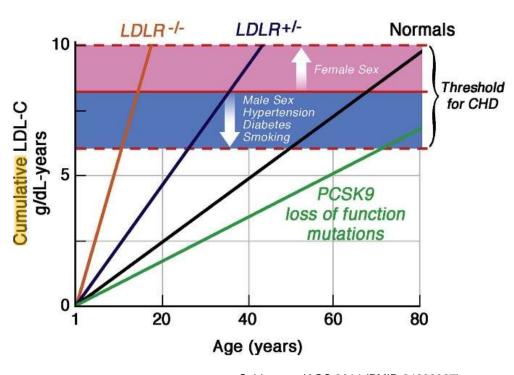
Gène	Type de variants pathogènes	Fréquence dans HF avérée	Phénotypes alléliques	Nombre de variants rapportés dans LOVD
LDLR	Variants pathogènes type « perte de fonction », donc aussi grandes délétions	60-80%	n.a.	1957
APOB	Variants pathogènes type faux-sens qui causent une protéine avec un ligand apoB dysfonctionnel	1-5%	Variants tronquants : hypobetalipoproteinémie	718
PCSK9	Variants pathogènes type « gain de fonction » qui augmentent la dégradation des récepteurs LDL	Jusqu'à 3%	Variants « perte de fonction » : hypobetalipoproteinémie, hypocholesterolémie	208

Corrélations génotype-phénotype


Khera, J Am Coll Cardiol. 2016 (PMID 27050191)

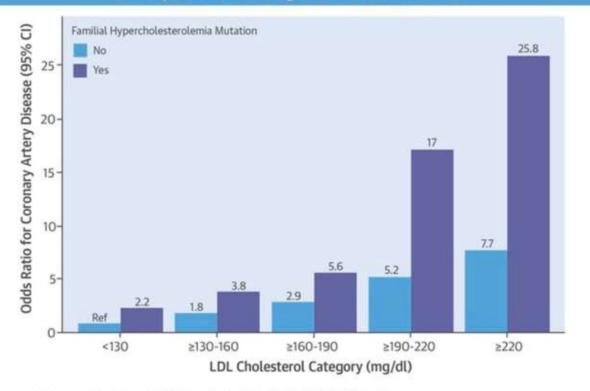
L'expression clinique est fortement associée au gène muté et au type de variant pathogène

Taux LDL identique ≠ risque identique

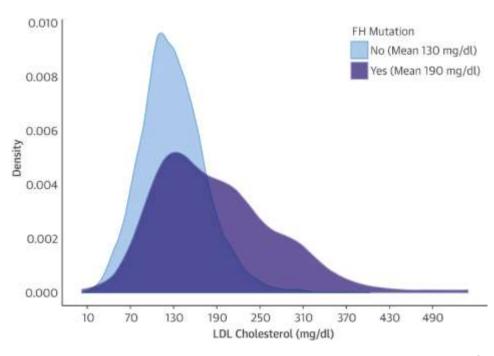


B. Impact of Familial Hypercholesterolemia Mutation Status on Coronary Artery Disease According to LDL Cholesterol Level

Khera, A.V. et al. J Am Coll Cardiol. 2016;67(22):2578-89.

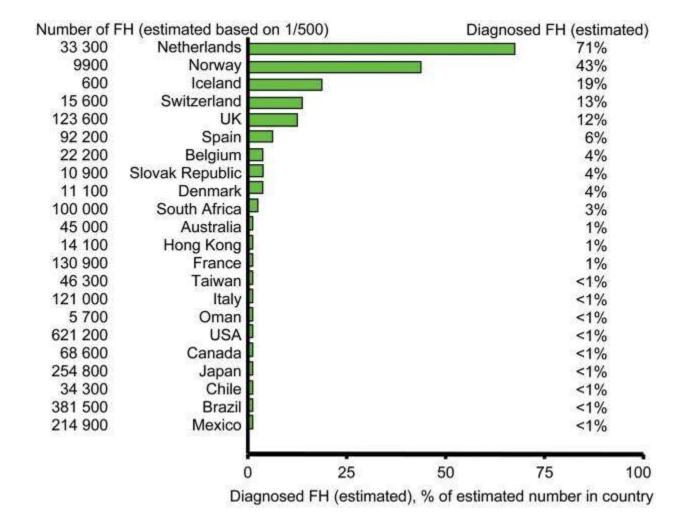

>>> Adapter la thérapie

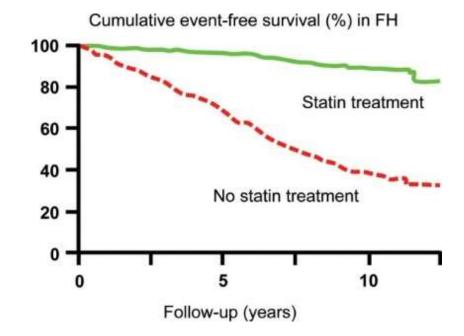
Sniderman JACC 2014 (PMID 24632267)


Taux LDL identique ≠ risque identique

B. Impact of Familial Hypercholesterolemia Mutation Status on Coronary Artery Disease According to LDL Cholesterol Level

Khera, A.V. et al. J Am Coll Cardiol. 2016;67(22):2578-89.


>>> Adapter la thérapie


27% des individus avec un variant pathogène ont des taux de LDL-C <130 mg/dl >>> pénétrance incomplète pour le phénotype biochimique

Zentralinstitut der Spitäle

FH : sous-diagnostiquée et sous-traitée

Copenhagen General
 Population Study : que 48% des personnes avec une FH recevaient des statines

Le test génétique : points à considérer

- Remboursement
- Technique
- Interprétation

- La FH ne figure pas sur la liste des analyses (LA)
- Pas grave : il y a les positions « maladies orphelines » !
- Mais : fréquence FH = 1:250...
- Demande pour ajouter la FH sur la LA
- > Actuellement rabais à Sion (<1000.- au lieu de >3000.-)

No. pos.	NP	Dénomination (Analyses de génétique moléculaire)	Limitation	DL
2460.00	350	Maladie génétique rare (maladie orpheline) présentant les critères suivants: a. Prévalence génétique de la maladie égale ou inférieure à 1/2000 b. Maladie monogénique référencée dans le catalogue OMIM (Online Mendelian Inheritance in Man)	Prescription des analyses seulement par des médecins titulaires du titre postgrade fédéral "génétique médicale" ou d'un titre postgrade fédéral le plus étroitement lié à la maladie faisant l'objet de l'examen selon la loi fédérale du 23 juin 2006 sur les professions médicales universitaires (loi sur les professions	G

Technique: quels gènes?

Lipoprotein lipase deficiency, Hyperlipoproteinemia, Combined

hyperlipidemia, familial

Hypercholesterolemia

LPL

of care for patients with definite or probable FH, as well as for their at-risk relatives. Testing should include the genes encoding the low-density lipoprotein receptor (*LDLR*), apolipoprotein B (*APOB*), and proprotein convertase subtilisin/kexin 9 (*PCSK9*); other genes may also need to be considered for analysis based on patient phenotype.

JACC VOL. 72, NO. 6, 2018
AUGUST 7, 2018:662-80


JACC Scientific Expert Panel

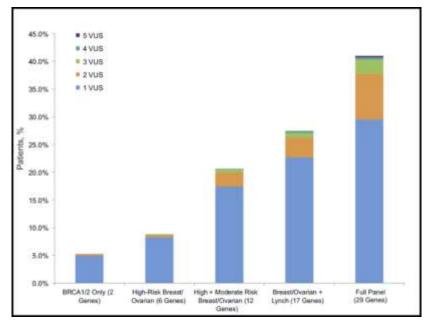
Panel Gene List: APOB, LDLR, LDLRAP1, PCSK9

Additional genes from our cardiology test menu may be added to this panel by selecting test code J556C.

✓	Primary pane	el (4 genes)	0	INVITAE
	APOB	LDLR	LDLRAP1	PCSK9
	Panel details	and technical	assay limitatior	ns
✓	Add-on for c	linical overlap	ping condition	ns (2 genes)
	ABCG5	ABCG8	> sitoster	olemia

Quelle technique?

Quelle technique?


- Séquençage ciblé :
- On séquence un panel de gènes défini
- (On n'analyse que les gènes demandés)
- Bonne sensibilité
- Coût et travail réduits
- Pas de gènes additionnels

- Exome clinique / exome :
- On séquence les exons de tous les gènes (avec impact clinique connu)
- On n'analyse que les gènes demandés
- + Analyse de gènes supplémentaires (p.ex. diagnostic différentiel; exome complet : « nouveaux » gènes)
- Sensibilité, coûts

Plus de gènes = plus de VUS

Lincoln et al., J Mol Diagn. 2015 p533

Plus de gènes = plus de « Incidental Findings »

APOLIPOPROTEIN E; APOE

omim.org

HGNC Approved Gene Symbol: APOE

Cytogenetic location: 19q13.32 Genomic coordinates (GRCh38): 19:44,905,795-44,909,394 (from NCBI)

Gene-Phenotype Relationships

View clinical synopses as a table

Location	Phenotype	Phenotype MIM number	Inheritance	Phenotype mapping key
19q13.32	Alzheimer disease-2	104310	AD	3
	Hyperlipoproteinemia, type III	617347		3
	Lipoprotein glomerulopathy	611771		3
	Sea-blue histiocyte disease	269600	AR	3
	{?Macular degeneration, age-related}	603075	AD	3
	[Coronary artery disease, severe, susceptibility to]	617347		3

BTW:

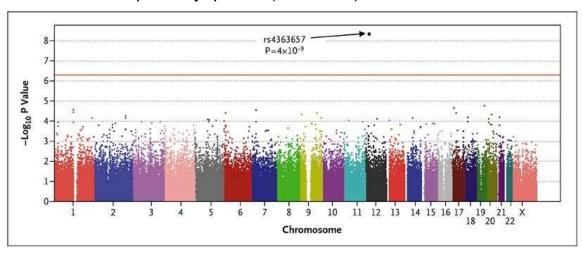
American College of Medical Genetics and Genomics

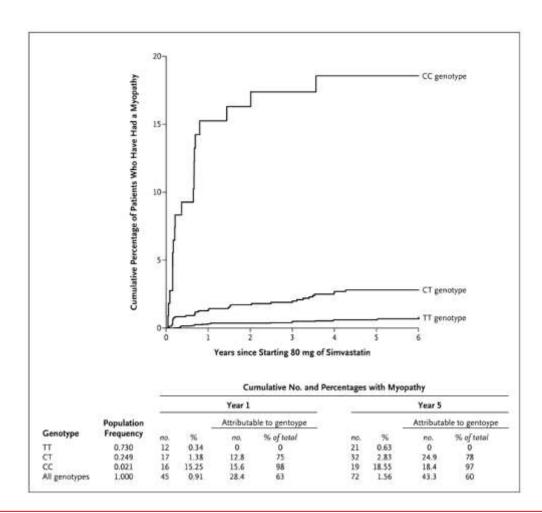
ACMG Recommendations for Reporting of Incidental Findings in Clinical Exome and Genome Sequencing

In clinical exome and genome sequencing, there is potential for the recognition and reporting of incidental or secondary findings unrelated to the indication for ordering the sequencing but of medical value for patient care. The American College of Medical Genetics and Genomics

Phenotype	MIM - Disorder	PMID - GeneReviews Entry	Age of Onset	Gene	MIM - Gene	Inheritance*	Variants to Report [#]
		No		LDLR	606945	SD	KP & EP
Familial hypercholesterolemia	143890, 603776	GeneReviews entry	Child	APOB	107730	SD	KP
		J,		PCSK9	607786	AD	

Zentralinstitut der Soitä


Mais aussi : plus peut être mieux


Pourquoi ne pas intégrer un marqueur pharmacogénétique ? P.ex. SLCO1B1

SLCO1B1 Variants and Statin-Induced Myopathy — A Genomewide Study

The SEARCH Collaborative Group*

- Incidence de myopathie : 1 cas par 10,000 patients par an avec des doses standards de statines
- Prévalence de l'allèle C du variant SLCO1B1 rs4149056 dans la population : 15%
- Odds ratio pour myopathie (CC vs TT): 16.9

PMID 18650507

Interprétation des variants : petite répétition des principes

Est-ce qu'un variant retrouvé explique le phénotype observé ?

Pathogenic: P(patho) > 99%

Likely pathogenic: P(patho) > 95%

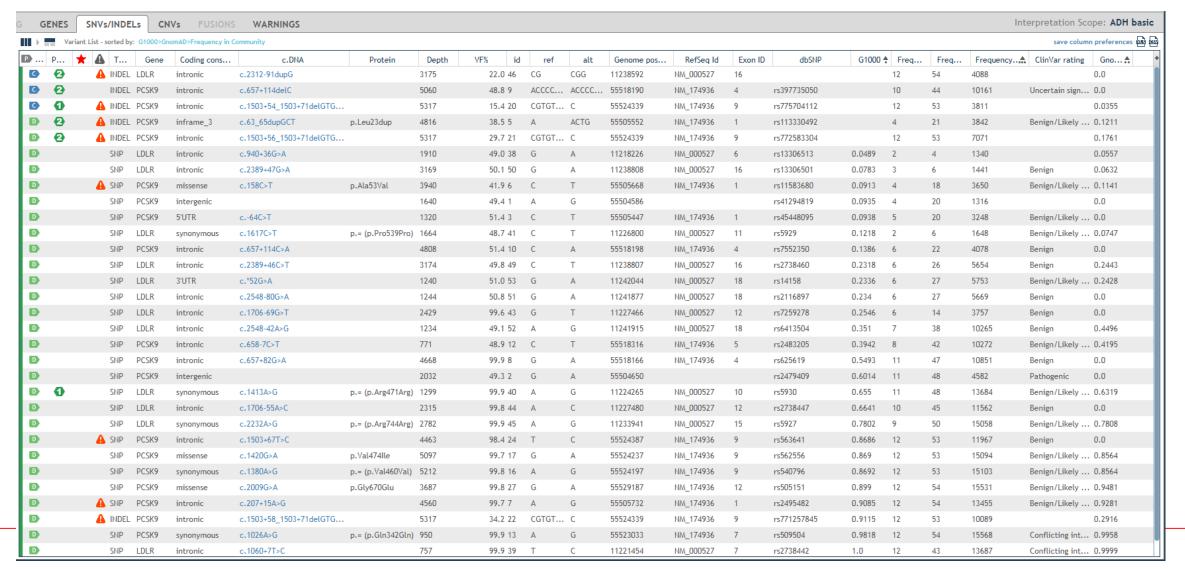
theatereumeniden.de

VUS: P(patho) 5% à 95%

Benign: P(patho) < 1%

Likely benign: P(patho) <5%

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology Genetics


- **Critères (entre autres):**
- Fréquence dans la population
- Type de mutation, prédictions
- Bases de données, littérature
- Tests fonctionnels, co-ségrégation

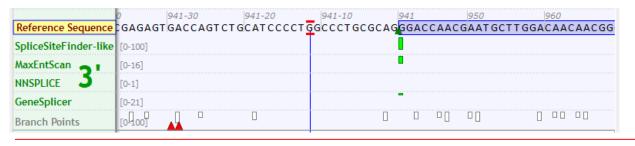
in Medicine

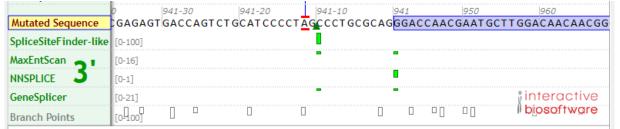
Interprétation des variants : un cas simple

· 31 variants ; tous fréquents dans la population générale

Interprétation des variants : encore un cas simple

• LDLR: p.Gln33Ter (mutation stop; pathogène dans littérature et dans ClinVar)


Variant P ★		_	nomAD>Frequency in (Community															
		. Gene																	nn preferenc
	SNE		Coding cons	c.DNA	Protein		/F% id	ref	alt	Genome pos	RefSeq Id	Exon ID	dbSNP	G1000 ♣	Freq	Freq		ClinVar rating	
O			nonsense	c.97C>T	p.Gln33*	298	51.0 29	С	Т	11210928	NM_000527	2	rs121908024		1	3	6	Pathogenic	0.0
_		EL PCSK9	intronic	c.1503+60_1503+71delGTG		4361		CGTGT		55524339	NM_174936	9	rs762196801		2	34	3545		0.0
• •		EL LDLR	intronic	c.2312-91dupG		1102	28.4 39	CG	CGG	11238592	NM_000527	16	770500004		2	41	4088		0.0
0	_	EL PCSK9	intronic	c.1503+56_1503+71delGTG		4361	23.8 19	CGTGT		55524339		9	rs772583304		2	37	7071		0.0
• •		EL PCSK9	intronic	c.657+114delC		1319	58.4 7			55518190	_	4	rs397735050		1	26	10161	Uncertain sign	
	SNF		intronic	c.658-36G>A		278	44.6 9	G	A	55518287	_	5	rs11800265	0.007	1	6	1446	Uncertain sign	
	SNF		intronic	c.657+9G>A		1316	42.5 4	G	A	55518093	_	4	rs11800243		1	6	1533	Benign, Uncert	
	SNF		intronic	c.524-11G>A		1308	42.6 3	G	A	55517940	-	4	rs11800231		1	8	1605	Benign	0.0
	SNF		intronic	c.657+76C>A		1314	42.5 5	С	Α	55518160	NM_174936	4	rs11806638		1	12	1790	Benign	0.0
	SNF		synonymous	c.1773C>T	p.= (p.Asn591Asn)		51.1 36	С	T	11227602	NM_000527	12	rs688	0.2758		28	10847	Benign	0.0
•	SNF		intronic	c.1359-30C>T		338	49.4 33		T	11224181	NM_000527	10	rs1003723		1	27	9639	Benign	0.0
	SNF		intronic	c.1060+10G>C		319	53.9 31		С	11221457	_	7	rs12710260		1	21	8841	Benign	0.0
•	SNF		synonymous	c.1959T>C	p.= (p.Val653Val)		51.6 37		C	11230881	NM_000527	13	rs5925		2	31	11058	Benign	0.0
	SNF		intronic	c.2548-42A>G	_	693	100.0 42	Α	G	11241915	NM_000527	18	rs6413504		2	30	10265	Benign	0.0
• •	SNF		splice_donor_+3		p.?	282		A	G	55518467	_	5	rs2495477		2	30	10031	Benign	0.0
	SNF		intronic	c.657+82G>A		1312	57.6 6		A	55518166		4	rs625619	0.5493		31	10851	Benign	0.0
0	SNF		synonymous	c.1413A>G	p.= (p.Arg471Arg)		49.6 34	Α	G	11224265	NM_000527	10	rs5930		2	38	13684	Benign	0.0
	SNF		intronic	c.1706-55A>C		310	51.9 35		С	11227480	NM_000527	12	rs2738447	0.6641		35	11562		0.0
•	SNF		synonymous	c.2232A>G	p.= (p.Arg744Arg)		48.7 38		G	11233941	NM_000527	15	rs5927	0.7802		40	15058	Benign	0.0
•	A SNF		intronic	c.1503+67T>C		4171	98.9 23	Т	С	55524387	_	9	rs563641		2	40	11967	Benign	0.0
•	SNF		missense	c.1420G>A	p.Val474Ile	4235	99.6 15		A	55524237	NM_174936	9	rs562556		2	40	15094	Benign	0.0
•	SNF		synonymous	c.1380A>G	p.= (p.Val460Val)		99.9 14		G	55524197		9	rs540796	0.8692		40	15103	Benign	0.0
•	SNF		missense	c.2009G>A	p.Gly670Glu	2979	99.7 27		A	55529187	NM_174936	12	rs505151		2	42	15531	Benign	0.0
•	SNF		intronic	c.207+15A>G		987	99.7 2	A	G	55505732	NM_174936	1	rs2495482		2	42	13455	Benign	0.0
•		EL PCSK9	intronic	c.1503+58_1503+71delGTG		4361	33.1 20	CGTGT		55524339	_	9	rs771257845	0.9115		36	10089		0.0
•	SNF	PCSK9	synonymous	c.1026A>G	p.= (p.Gln342Gln)	246	99.6 11	Α	G	55523033	NM_174936	7	rs509504	0.9818	2	42	15568	Benign, Uncert	0.0



Interprétation des variants : on augmente la difficulté

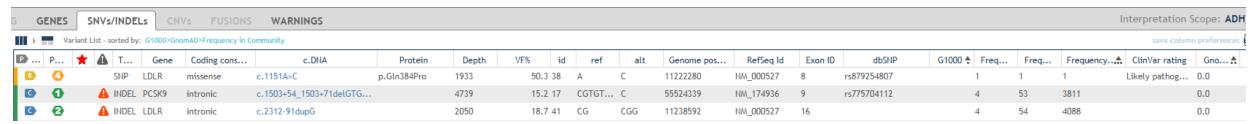
G G	NES	SNVs/INDE	Ls CN	IVs FUSIONS	WARNINGS													Inte	erpretation Sco	ppe: ADH bas
III > =	Vari	ant List - sorted b	y: G1000>Gn	nomAD>Frequency in (Community														save column	n preferences
P	P	★ 🔬 T	Gene	Coding cons	c.DNA	Protein	Depth	/F% id	ref	alt	Genome pos	RefSeq Id	Exon ID	dbSNP	G1000 💠	Freq	Freq	Frequency	ClinVar rating	Gno ♣
		SNP	LDLR	intronic	c.941-12G>A		406	49.5 35	G	А	11221316	NM_000527	7	rs879254734		1	1	2	Likely pathog	0.0
6	2	SNP	LDLR	intronic	c.1060+7_1060+10delTCCG		409	99.3 36	TCCG	CCCC	11221454	NM_000527	7			1	11	1371		0.0
В	2	A INDEL	PCSK9	inframe_3	c.63_65dupGCT	p.Leu23dup	1495	43.7 5	Α	ACTG	55505552	NM_174936	1	rs371488778		1	21	3842		0.0
6	2	A INDEL	. LDLR	intronic	c.2312-91dupG		1834	27.3 43	CG	CGG	11238592	NM_000527	16			2	54	4088		0.0
C	2	A INDEL	PCSK9	intronic	c.1503+56_1503+71delGTG		5766	29.7 19	CGTGT	C	55524339	NM_174936	9	rs772583304		2	53	7071		0.0
•	2	INDEL	PCSK9	intronic	c.657+114delC		1826	98.5 9	ACCCC	ACCCC	55518190	NM_174936	4	rs397735050		2	44	10161	Uncertain sign	0.0
C		SNP	LDLR	synonymous	c.81C>T	p.= (p.Cys27Cys)	423	49.2 34	С	Т	11210912	NM_000527	2	rs2228671	0.0569	2	12	3255	Benign	0.0

- LDLR: c.941-12G>A: variant intronique hors d'un site d'épissage
- ClinVar: 1x pathogenic; 3x likely pathogenic; 1x VUS; 1x benign
- gnomAD (exomes de >100'000 individus) : pas retrouvé
- Littérature : test fonctionnel positif ; co-ségrégation avec le phénotype
- Alamut (prédiction des sites d'épissage) :

Interpréter les variants faux sens, ça peut être difficile

• *LDLR* : p.(Gln384Pro)

G	GE	NES	SI	NVs/	IND	ELs	CN\	Vs FUSIONS	WARNINGS														I	nterpretation S	cope: ADH
Ш	F	Var	riant Li	st - sc	rted	y: G1	000>Gno	omAD>Frequency in (Community															save column	n preferences
P		P	*	A	Т	(Gene	Coding cons	c.DNA	Protein	Depth	VF%	id	ref	alt	Genome pos	RefSeq Id	Exon ID	dbSNP	G1000 🛧	Freq	Freq	Frequency	ClinVar rating	Gno ♣
	>	4			SNP	LDI	LR	missense	c.1151A>C	p.Gln384Pro	1933	50.3	38	Д	С	11222280	NM_000527	8	rs879254807		1	1	1	Likely pathog	0.0
	•	0		A	INDE	L PC	5K9	intronic	c.1503+54_1503+71delGTG		4739	15.2	17 (CGTGT	С	55524339	NM_174936	9	rs775704112		4	53	3811		0.0
	•	2		A	INDE	L LDI	LR	intronic	c.2312-91dupG		2050	18.7	41 (CG	CGG	11238592	NM_000527	16			4	54	4088		0.0


- ClinVar: 1x likely pathogenic, 1x pathogenic; LOVD: probably affects function
- gnomAD : pas retrouvé parmi 125'000 (?) individus « normaux » :

Variant ID	▲ Source	Consequence	Annotation	Flags Allele Count	Allele Number
19-11222248-T-C	E G	p.Gly373Gly	synonymous	2	282674
19-11222257-G-T	E	p.Lys376Asn	missense	1	251340
19-11222258-T-C	E	p.Cys377Arg	missense	1	251338
19-11222260-C-A	E	p.Cys377Ter	stop gained	1	251336
19-11222262-A-C	E	p.Gln378Pro	missense	2	251308
19-11222264-T-C	G	p.Cys379Arg	missense	1	31396
19-11222267-G-A	G	p.Glu380Lys	missense	1	31406
19-11222268-A-G	E	p.Glu380Gly	missense	1	251304
19-11222269-G-A	E	p.Glu380Glu	synonymous	1	251306
19-11222270-G-A	E	p.Glu381Lys	missense	1	251300
19-11222273-G-C	E	p.Gly382Arg	missense	1	251264
19-11222274-G-C	E	p.Gly382Ala	missense	1	251224
19-11222274-G-A	E	p.Gly382Asp	missense	1	251224
19-11222284-G-C	E	p.Leu385Leu	synonymous	1	251110
19-11222285-G-T	E	p.Asp386Tyr	missense	1	251080
19-11222289-C-T	E	p.Pro387Leu	missense	7	251022
19-11222291-C-A	E	p.His388Asn	missense	5	251004
19-11222295-C-T	E	p.Thr389Met	missense	5	250884

Interpréter les variants faux sens, ça peut être difficile

• *LDLR* : p.(Gln384Pro)

- ClinVar: 1x likely pathogenic, 1x pathogenic; LOVD: probably affects function
- gnomAD: pas retrouvé parmi 125'000 (?) individus « normaux »
- Prédictions : 2x pathogène, 1x toléré
- Littérature (sélection) :
- Fouchier 2001 (PMID 11810272): retrouvé 1x (nommé Q363P)
- Dedoussis 2004 (PMID 15200491): retrouvé 1x (nommé Q363P)
- Wang 2005 (PMID 15576851): retrouvé 1x (nommé Q363P)
- Pas de publications avec tests fonctionnels ou analyses de co-ségrégation

LDLR: p.(Gln384Pro): ça donne quoi selon Richards et al.?

- ClinVar: 1x likely pathogenic, 1x pathogenic; LOVD: probably affects function
- gnomAD : pas retrouvé parmi 125'000 (?) individus « normaux »
- Prédictions : 2x pathogène, 1x toléré
- Pas de publications avec tests fonctionnels ou analyses de co-ségrégation
- Applications des critères ACMG (Richards et al.) :

X PM2 Absent from controls (or at extremely low frequency if recessive) in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium

X PP3 Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.)

X PP5 Reputable source recently reports variant as pathogenic, but the evidence is not available to the laboratory to perform an independent evaluation

PS4 The prevalence of the variant in affected individuals is significantly increased compared with the prevalence in controls

Likely pathogenic

VUS

Interpréter les faux sens sans évidence, c'est du non-sens

- Revue systématique des variants FH (LDLR, APOB, PCSK9) listés dans les bases de données (LOVD etc.)
- 2'104 variants classifiés par Chora et al. selon les critères ACMG :
- 705 variants : (likely) pathogenic
- 1'470 variants : classification en principe seulement possible avec tests fonctionnels
- Parmi ces 1'470 variants : 243 avec test fonctionnels (20% : pas de conclusion suite au test)

Analysis of publicly available LDLR, APOB, and PCSK9 variants associated with familial hypercholesterolemia: application of ACMG guidelines and implications for familial hypercholesterolemia diagnosis

Joana Rita Chora, MSc^{1,2}, Ana Margarida Medeiros, MSc^{1,2}, Ana Catarina Alves, PhD^{1,2} and Mafalda Bourbon, PhD^{1,2}

a null protein. This will avoid misdiagnosis. The example of the variant c.806G > A/p.(Gly269Asp) (formerly known as Gly248Asp) exemplifies very well this problem; this variant was considered disease-causing in all countries where it described—Spain,²⁸ the Netherlands,²⁹ and Italy (FH Rome-3)—until in 2008 we reported complete lack of cosegregation in a Portuguese family where later a pathogenic variant was found.³⁰ In 2012 the functional assay was performed³¹ and it proved beyond any doubt that this variant had little or no effect on the LDLR function, being considered as benign. This was one of the most common variants in Spain³¹ and was described in other countries as mentioned before; reports had to be withdrawn and new reports had to be sent to the clinician and it had to be explained to the patient that the cause of their dyslipidemia had, in fact, not been found yet. To avoid this kind of situation an effort

Interprétation des variants : un aspect intéressant

- Réévaluation des VUS de gènes de prédisposition au cancer
- 26'670 VUS uniques identifiés initialement
- Lors de la réévaluation : 2'048 VUS re-classifiés (8%)
- 90% : (likely) benign

- 10% : (likely) pathoge<u>nic</u>

- Situation parmi les 92% des VUS non-re-classifiés ?
- Situation parmi les VUS FH?

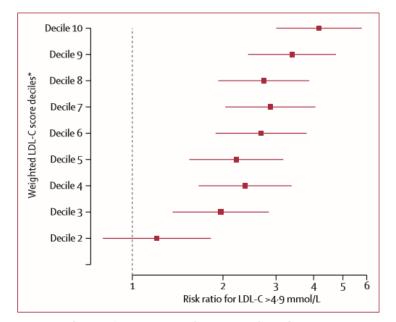
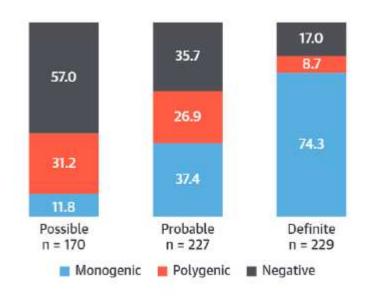
L'hypercholestérolémie polygénique

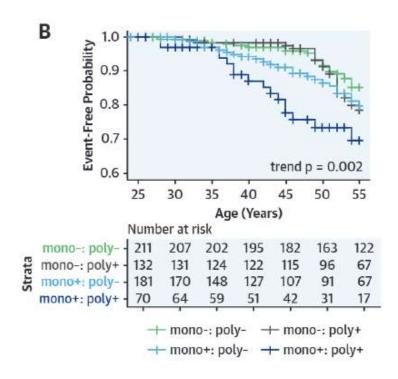
Hôpital du Valais
Spital Wallis
Institut Central des Hôpitaux
Zentralinstitut der Spitaler

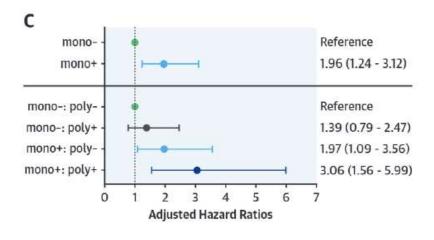
- FH: variants rares avec impact lourd
- Effet de beaucoup variants fréquents avec impact faible ?
- > Talmud 2013 : effet cumulé de 12 variants fréquents :

0.008	No (Mean 130 mg/d): Yes (Wean 190 mg/d)
0.006	
Density	
0.004	
0.002	Khera 2016 (PMID 27050

	Chromosome number	Gene	Minor allele	Common allele	GLGC weight for score calculation	Minor allele frequency		
						Fit with known mutation (n=329)	Fil without known mutation (n-371)	Will controls (n=3020)
rs2479409	1	PCSK9	G*	A	0-057	0-33	0-39	0-35
rs629301	1	CHSR2	G	T.	0.15	0.19	0-12	0.21
51367117	2	APOB	A*	6	0.10	035	0-37	033
s4299376	2	ABCG8	G*	T	0-071	0-37	0-37	0-32
rs1564348	6	SIC22A1	c	T*	0-014	0.19	0-17	0-17
s1800562	6	HE	Α.	G*	0-057	0.06	0.08	0.07
3757354	6	MYLIP	T	C.	0-037	021	0-17	071
rs11220462	11	ST3GAL4	A*	G	0.050	0.14	0-13	0.13
rs801/3/7	14	NYNKIN	A*	G	0.029	048	0.47	0.48
56511720	19	LDLR	T	G*	0.18	0-10	0-08	0-13
rs429358	19	APOET	C	1	-	0.19	0.21	0.15
rs7412	19	APDET	T	c		0-04	0.03	906
ยย	19	APOE	-	-	-09		2	
213	19	APOE	(0 + 0)) +	-0-4	-	8	-
214	19	APOE		-	02	-	2	4
88	19	APOE	190)#i	0		-	-
364	19	APOE			0-1	-	3	-
6464	19	APOE	243	544	0-2		G	
							idine. C-cytosine. *Test thods section of our str	

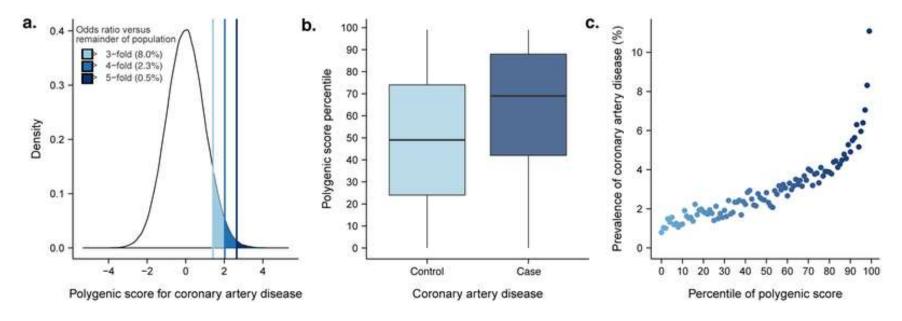



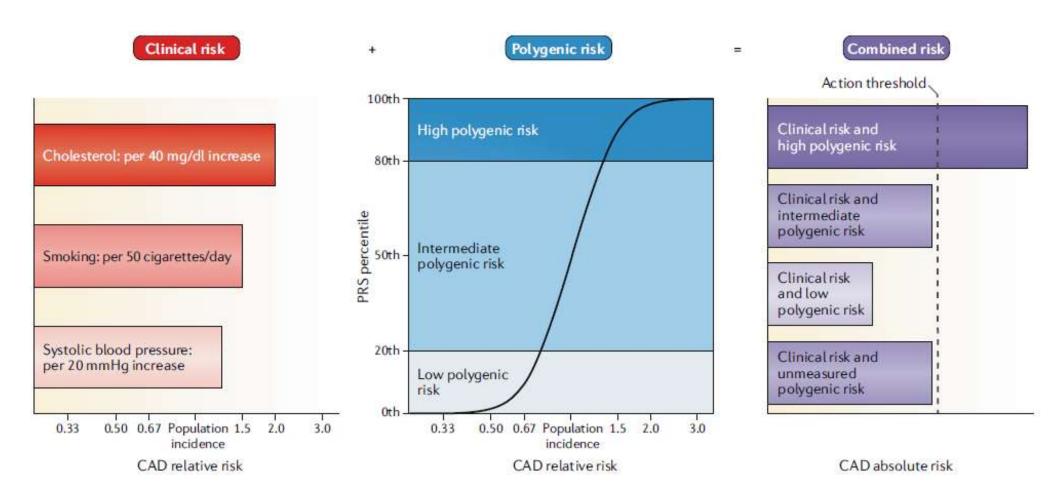

Figure 1: Risk ratio of participants in the WHII population having LDL-C >4.9 mmol/L according to gene score decile LDL-C=low-density lipoprotein cholesterol. WHII=Whitehall II. *Decile 1 used as reference.



Combinaison d'hypercholestérolémie polygénique et familiale

- 626 patients avec FH possible, probable ou définitive
- ➤ Recherche de mutations FH (*LDLR*, *APOB*, *PCSK9*, *LDLRAP1*)
- Génotypage de 28 polymorphismes > calcul du polygenic risk score (PRS). ≥80% percentile = « hypercholestérolémie polygénique »

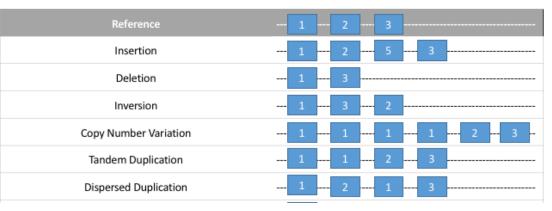


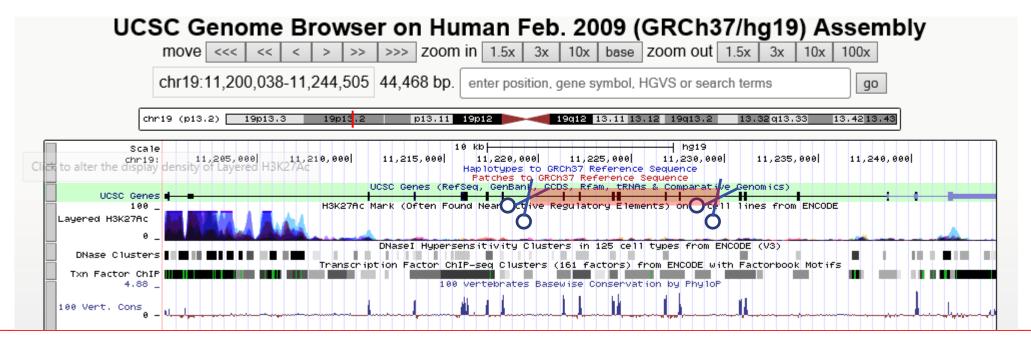

Polygenic risk scores (PRS) à grande échelle

288'000 personnes de la UK Biobank ; 6'630'150 variants génotypés

- 8% des cas : risque de CAD augmenté 3x selon leur PRS (= même effet qu'une mutation FH)
- Chiffres similaires pour diabète et autres maladies
- "We propose that it is time to contemplate the inclusion of polygenic risk prediction in clinical care and discuss relevant issues."

Combinaison des risques (poly-)géniques et cliniques


Envers une médecine prédictive hautement personnalisée

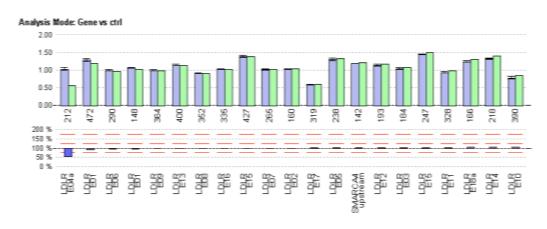

(Et si on ne veut pas savoir tout ça ?)

 LDLR: 2-10% des mutations sont des grandes délétions /

duplications

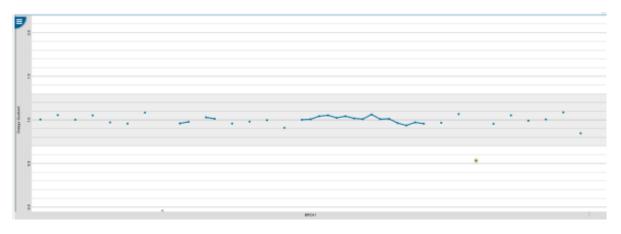
Structural Variation

wikipedia.org 10 septembre 2019


• LOVD : base de données LDLR

Effect 🗘	Reported 🔷	ClassClinical 💠	Exon 🔷	DNA change (cDNA)	Protein 😊	RNA change	DNA/Legacy 😂
+?/+?	1	ACGS: 4	_1_1i	c.(?187)_(67+1_68-1)dup	p.0?	r.(?)	-
+/+	4	ACGS: 5	_1_2i	c.(?187)_(190+1_191-1)del	p.0?	r.(?)	FH Valencia-1, FH Siracusa
+/+	3	ACGS: 5	_1_6i	c.(?187)_(940+1_941-1)del	p.0?	r.(?)	FH Bologna-1, FH Bari-3
+/+	1	ACGS: 5	_1_7i	c.(?187)_(1060+1_1061-1)del	p.0?	r.(?)	-
+/+	1	ACGS: 5	_1_8i	c.(?187)_(1186+1_1187-1)del	p.0?	r.(?)	-
+/+	1	ACGS: 5	_1_12i	c.(?187)_(1845+1_1846-1)del	p.0?	r.(?)	-
+/+	1	ACGS: 5	_1_14i	c.(?187)_(2140+1_2141-1)del	p.0?	r.(?)	-
+/+	1	ACGS: 5	_1_15i	c.(?187)_(2311+1_2312-1)del	p.0?	r.(?)	-
+/+	2	ACGS: 5	_1_18_	c.(?187)_(*2584_?)del	p.0?	r.(?)	-
+/+	1	ACGS: 5	3i_4i	c.(313+1_314-1)_(694+1_695-1)del	p.(Pro106_Ala232del)	r.(?)	-
+?/+? +/+	_	ACGS: 4 ACGS: 5	3i_5i 3i_6i	c.(313+1_314-1)_(817+1_818-1)dup c.(313+1_314-1)_(940+1_941-1)del	p.? p.(Pro105_Gly314delinsArg)	r.(?) r.(?)	FH Valencia-4, FH Vancouver-6, FH Petersburg
+?/+?		ACGS: 4			p.(Gly314Ala;Pro106_Cys313 dup)	r.(?)	-
+?/+	2	ACGS: 4		c.(313+1_314-1)_(1186+1_1187-1) dup	p.?	r.(?)	p.?

databases.lovd.nl



Dépistage des CNV : avant et après l'introduction du NGS

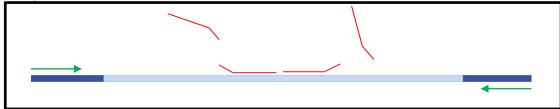
- Gold standard
- Fonctionne avec un seul échantillon
- Laborieux
- Si délétion d'une seule sonde : SNV ou vraie délétion ?

Après: CNV by NGS

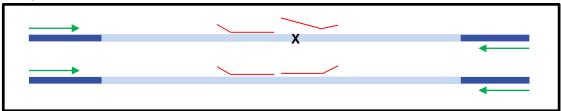
- Ne fonctionne pas toujours pour tous les amplicons
- Minimum 5 échantillons par run
- Si délétion d'un seul amplicon : SNV ou vraie délétion ?

SNV = Single Nucleotide Variant (= variant qui n'affecte qu'une base)

CNV by NGS : quelques détails pratiques



MLPA: vraie délétion ou SNV?


Pas de signal de délétion

Signal de délétion : vraie délétion

Signal de délétion : pas de délétion, mais SNV

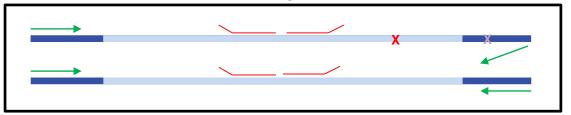
- > Confirmer avec un autre MLPA (= autres sondes)
- > Si pas disponible : au moins vérifier qu'il n'y a pas de SNV

CNV by NGS : vraie délétion ou SNV ?

Pas de signal de délétion

Signal de délétion : vraie délétion

Signal de délétion : pas de délétion, mais SNV



- > Confirmer en MLPA
- > Si MLPA négatif : allelic dropout ?

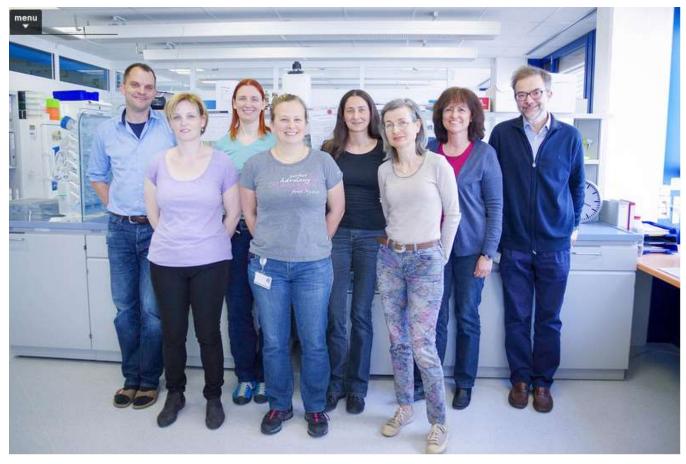
Allelic dropout: MLPA vs. CNV by NGS

- CNV by NGS facilite les analyses. Mais on voit des choses qu'on ne voyait pas avant, donc le travail ne diminue pas nécessairement
- Exemple : un allèle avec un variant exonique et un variant intronique

Combinaison de Sanger et MLPA:

- Sanger (= qualitatif) : on ne voit pas le variant exonique
- MLPA (= quantitatif) : on voit qu'il y a deux copies
- Pas d'analyses supplémentaires, donc variant exonique non-identifié

Séquençage NGS et CNV by NGS


- Séquençage NGS (= qualitatif) : on ne voit pas le variant exonique
- CNV by NGS (= quantitatif) : on voit l'allelic dropout
- Analyses supplémentaires = variant exonique sera identifié

Attention : c'est encore différent avec le NGS basé sur la capture !

- Il est important d'identifier les individus FH tôt pour pouvoir les traiter tôt
- L'analyse génétique a été facilitée par le NGS (dans la plupart des cas)
- L'interprétation des variants peut être délicate
- Les polygenic risk scores émergent ; leur utilité dans la clinique doit encore être prouvée

Dr Nathalie Brun Dr Tinh-Hai Collet Dr David Nanchen