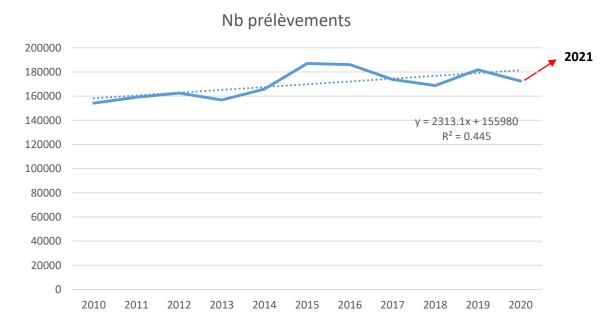
Automatisation TOTALE en bactériologie diagnostique



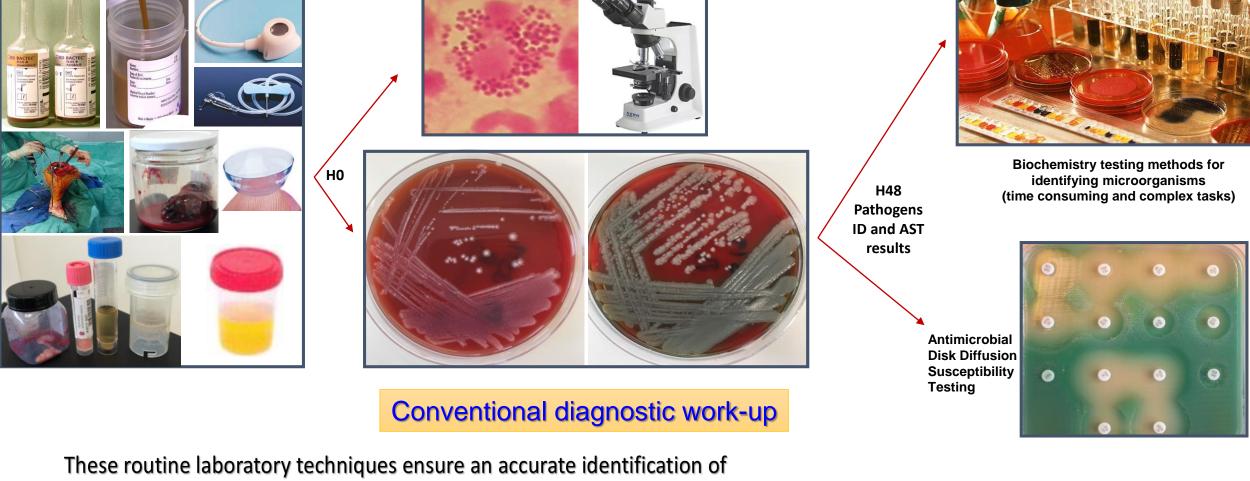
Dr A. CHERKAOUI, PhD-FAMH

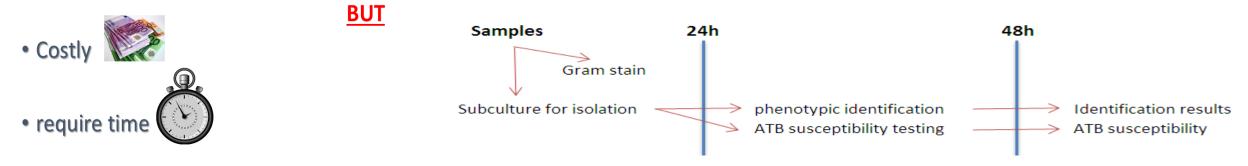
ARL - Lausanne 12 octobre 2021 There is no conflict of interest

- Conventional diagnostic work-up
- MALDI-TOF/MS (The beginning of great changes)
- Total Laboratory Automation
 - Project management
 - Change management
 - Laboratory efficiency improvement (Turnaround times (TAT)...)
 - Clinical impact
- Fully Automated solution for Antimicrobial Susceptibility Testing
- Perspectives

Laboratoire de Bactériologie Hôpitaux universitaires de Genève

Environ 10% d'augmentation sur 10 ans







These routine laboratory techniques ensure an accurate identification o most microorganisms

Conventional diagnostic work-up

STEP-1: Gram stain, samples inoculation on different culture media and incubation

> 1000 culture media per day / 4 Technologists (full time)

Conventional diagnostic work-up

STEPs 2 to 4: Incubation of culture media plates, Reading and Microbial identification

> 2000 culture media plates per day

Conventional diagnostic work-up

STEP-5: Antimicrobial susceptibility testing

> 100 AST per day / 1 Technologist (full time)

Articl

Mortality After Delay of Adequate Empiric Antimicrobial Treatment of Bloodstream Infection

Merel M. C. Lambregts ^{1,*,†}, Roos Wijnakker ^{1,†}, Alexandra T. Bernards ², Leo G. Visser ¹, Saskia le Cessie ³ and Mark G. J. de Boer ¹

Adequacy of Early Empiric Antibiotic Treatment and Survival in Severe Sepsis: Experience from the MONARCS Trial

Rodger D. MacArthur,¹ Mark Miller,² Timothy Albertson,³ Edward Panacek,³ David Johnson,⁴ Leah Teoh,⁵ and William Barchuk⁵

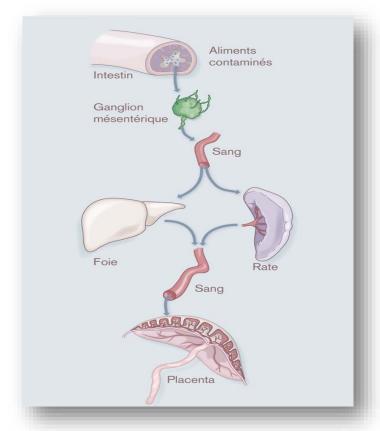
¹Wayne State University, Detroit, Michigan; ⁵Abbott Laboratories, Parsippany, New Jersey; ³University of California, Davis, Sacramento, California; and ²McGill University, Montreal, and ⁴Department of Medicine, Royal University Hospital, Saskatoon, Canada

As part of the Monoclonal Anti-TNF: A Randomized Controlled Sepsis (MONARCS) trial, which enrolled patients with suspected sepsis, we sought to determine whether adequate antibiotic therapy was associated with a decreased mortality rate. The study enrolled 2634 patients, 91% of whom received adequate antibiotic therapy. The mortality rate among patients given adequate antibiotic treatment was 33%, versus 43% among patients given inadequate treatment (P < .001).

We conclude that adequate antibiotic therapy results in a significant decrease in the crude mortality rate among patients suspected of sepsis.

Impact of Inadequate Empirical Therapy on the Mortality of Patients with Bloodstream Infections: a Propensity Score-Based Analysis

Pilar Retamar,^a María M. Portillo,^a María Dolores López-Prieto,^b Fernando Rodríguez-López,^c Marina de Cueto,^a María V. García,^d María J. Gómez,^e Alfonso del Arco,¹ Angel Muñoz,^a Antonio Sánchez-Porto,^b Manuel Torres-Tortosa,¹ Andrés Martín-Aspas,^l Ascensión Arroyo,^k Carolina García-Figueras,^b Federico Acosta,^l Juan E. Corzo,^m Laura León-Ruiz,ⁿ Trinidad Escobar-Lara,^o Jesús Rodríguez-Baño,^{a,b} and the SAEI/SAMPAC Bacteremia Group



LETTER TO THE EDITOR

Misidentification of *Listeria monocytogenes* by the Vitek 2 System

Niall De Lappe, Ciara Lee, Jean O'Connor, Martin Cormican

National Salmonella, Shigella & Listeria Reference Laboratory, Medical Microbiology Department, University Hospital Galway, Galway, Ireland

Pizarro-Cerda et al. Cell 2006

Prevention of Laboratory-Acquired Brucellosis

[Prevention of Laboratory-Acquired Brucellosis.

CID 2004; 38: 119]

Sophie Robichaud, Michael Libman, Marcel Behr, and Earl Rubin

¹Department of Infectious Diseases and Medical Microbiology, Montreal Children's Hospital, and ²Department of Infectious Diseases and Medical Microbiology, Montreal General Hospital, McGill University Health Center, Montreal, Quebec, Canada

Patient aux urgences avec drainage d'un abcès pleural

- Envoi du prélèvement au labo sans autre indication
- Inoculation des milieux de culture en class 2 biosafety
- · Absence de germe au Gram
- 72h, croissance de cocobacilles à Gram négatif
- Identification API 20 NE panel (BioMérieux):

Moraxella phenylpyruvica

Après 22 jours, identification définitive pour Brucella!!!

- 26 personnes travaillant dans laboratoire (donc risque d'exposition aux aérosols
- 19 physiquement présent
- 1 a « reniflé » les milieux de culture
- 6 ont manipulé (dont une femme enceinte)

«The 6 technologists who directly manipulated the organism were considered to be at higher risk for acquiring the disease.

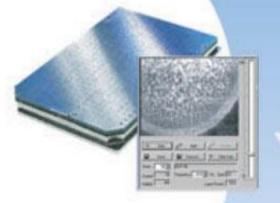
They were offered prophylaxis with doxycycline at a dosage of 100 mg po twice daily and rifampin at a dosage of 600 mg po q.d. for 3 weeks.

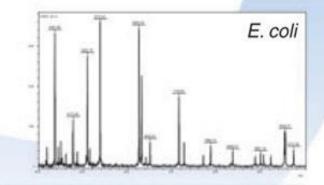
The pregnant worker received trimethoprim-sulfamethoxazole at a dosage of 160 mg/800 mg b.i.d. for 3 weeks.

One technologist in the high-risk group declined the prophylactic regimen.»

MALDI-TOF/MS

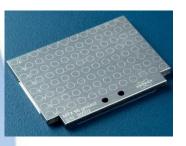
Unknown 'single colony'

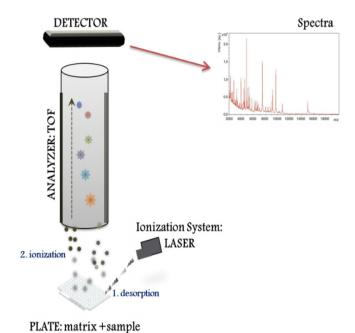

Adjusted normalized peaks for spectrum 4


Data evaluation identification and classification

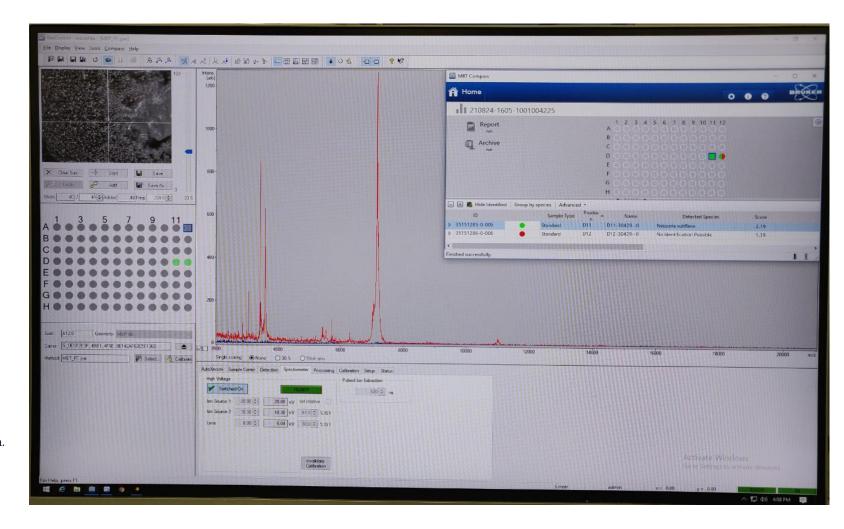
Sample preparation:

- -direct thin layer without any treatment
- -direct measurement of cell extracts


Add HCCA matrix solution


Acquisition of MALDI-TOF MS spectra

Put one colony on the target And add a matrix



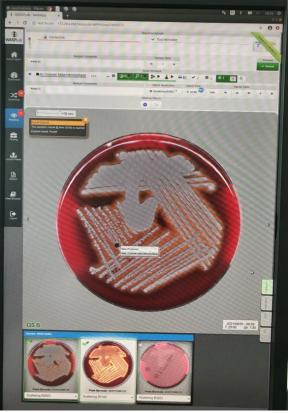

Insert the target and start shooting

Figure 1. Schema showing the linear mode workflow in a MALDI–TOF MS system. Microorganisms **2021**, 9, 1539.

https://doi.org/10.3390/microorganisms9071539

Automatic System for Colony Picking and MALDI-TOF Targets
Preparation

JOURNAL OF CLINICAL MICROBIOLOGY, Apr. 2010, p. 1169–1175 0095-1137/10/\$12.00 doi:10.1128/JCM.01881-09 Copyright © 2010, American Society for Microbiology. All Rights Reserved.

Vol. 48, No. 4

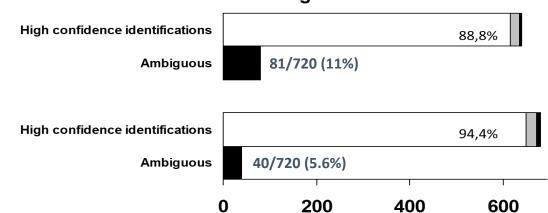
Shimadzu

Comparison of Two Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Methods with Conventional Phenotypic Identification for Routine Identification of Bacteria to the Species Level⁷

Abdessalam Cherkaoui,^{1*} Jonathan Hibbs,² Stéphane Emonet,¹ Manuela Tangomo,² Myriam Girard,² Patrice Francois,² and Jacques Schrenzel^{1,2}

Clinical Microbiology Laboratory¹ and Genomic Research Laboratory,² Service of Infectious Diseases, University of Geneva Hospitals (HUG), CH-1211 Geneva 14, Switzerland

Received 23 September 2009/Returned for modification 23 November 2009/Accepted 9 February 2010


Cost and timeliness estimates of Bruker-based identification

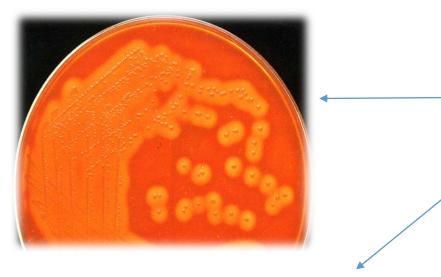
	Cost per isolate (\$US)			Turnaround time (hr)		
	Avg.	Total	Avg.	Total		
High confidence MALDI-TOF MS (n=636)	\$0.50	\$318	0.08	53		
Lower-confidence and Ambiguous MALDI-TOF MS (n=84)	\$10.50	\$882	24	2,016		
	Total cost:	\$1,200	Average t	Average time: 3 hrs		

Accuracy of MALDI-TOF MS identifications of 720 clinical isolates

□ Concordant with conventional methods□ Concordant with PCR

■ Incorrect or ambiguous

Cost and timeliness estimates of conventional identification


All isolates (n=720)	Total cost:	\$4,616	Average	time: 15 hi	'S
Other (n=449)	\$10.00	\$4,490	24	10,776	
S. aureus (n=55)	\$1.50	\$83	1	55	
E. coli (n=216)	\$0.20	\$43	1	216	
	Cost per iso Avg.	<u>late (\$US)</u> Total	<u>Turnarour</u> Avg.	nd time (hr) Total	1

JOURNAL OF CLINICAL MICROBIOLOGY, Aug. 2011, p. 3004–3005 0095-1137/11/\$12.00 doi:10.1128/JCM.00240-11 Copyright © 2011, American Society for Microbiology. All Rights Reserved. Vol. 49, No. 8

Evaluation of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Rapid Identification of Beta-Hemolytic Streptococci[▽]

Abdessalam Cherkaoui, 1* Stéphane Emonet, 1 José Fernandez, 1 Didier Schorderet, 1 and Jacques Schrenzel 1,2

Bacteriology Laboratory¹ and Genomic Research Laboratory, Department of Internal Medicine,² Service of Infectious Diseases, University of Geneva Hospitals (HUG), CH-1211 Geneva 14, Switzerland

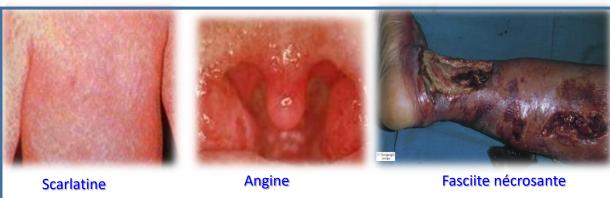
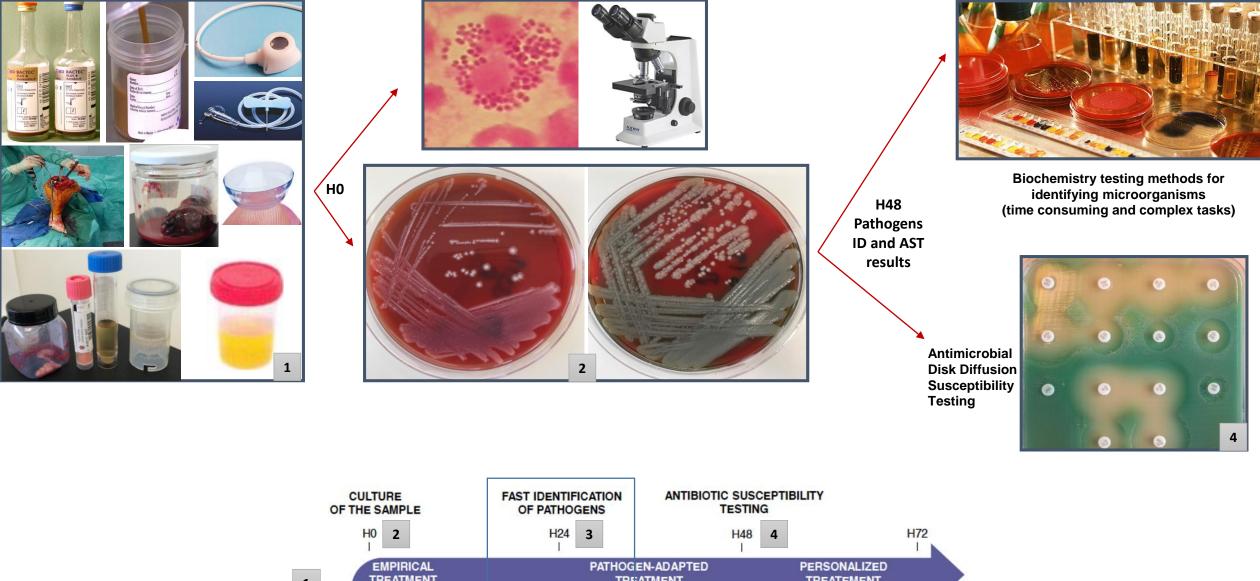
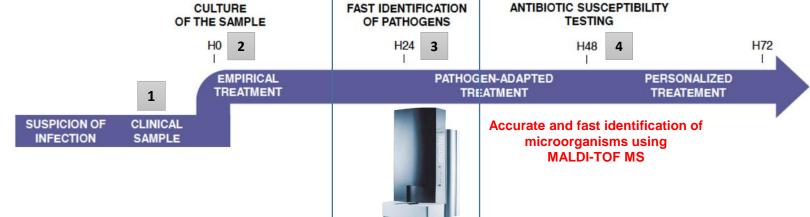
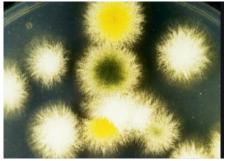
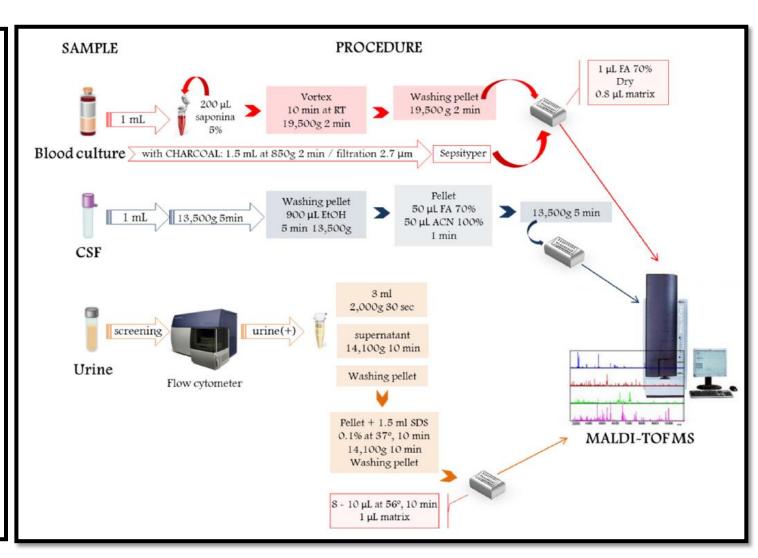




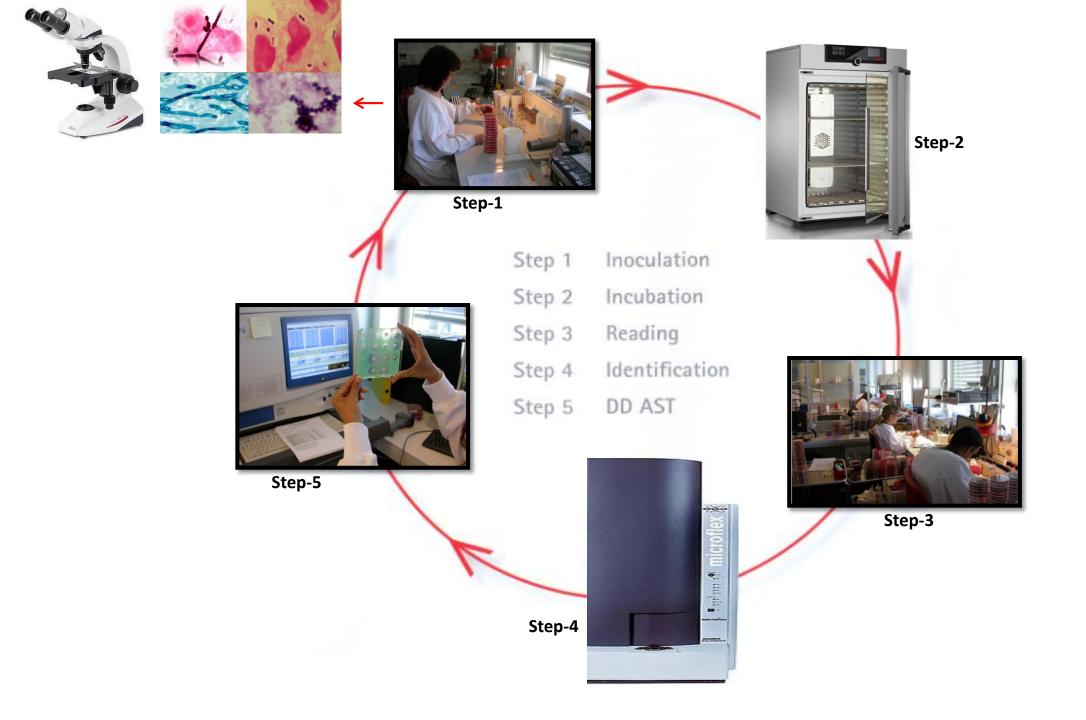
TABLE 1. Accuracy of MALDI-TOF MS identification of 386 beta-hemolytic streptococcal isolates^a

	No. of isolates (%) found by:			
Organism group (no. of isolates) and identification parameter	MALDI-TOF MS identification with score of >2.0	Vitek2 identification	16S rRNA gene sequencing	
Streptococcus pyogenes (52) Species correct Major error Minor error No identification	52 (100) 0 0 0	48 (92) 2 (3.8) 0 2 (3.8)	4 (7.7)	
Streptococcus agalactiae (306) Species correct Major error Minor error No identification	306 (100) 0 0 0	269 (88) 2 (0.7) 32 (10.5) 3 (1.0)	37 (12)	
Streptococcus dysgalactiae (28) Species correct Major error Minor error No identification	28 (100) 0 0 0	11 (39) 7 (25) 1 (3.6) 9 (32)	17 (6.1)	



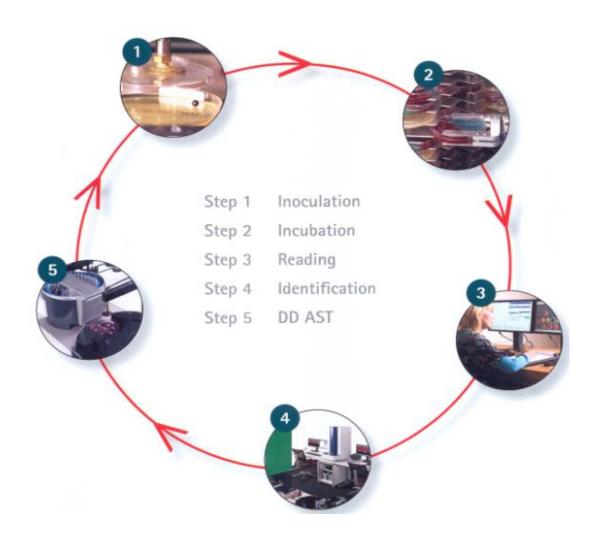
Applications of MALDI-TOF mass spectrometry in clinical microbiology


- MALDI-TOF MS to identify rare pathogenic bacteria (e.g., Bacillus anthracis)
- MALDI-TOF MS to identify pathogenic filamentous Fungi



- MALDI-TOF-based subtyping as a tool for outbreak investigation
- Antibiotic resistance testing using MALDI-TOF MS

• ...



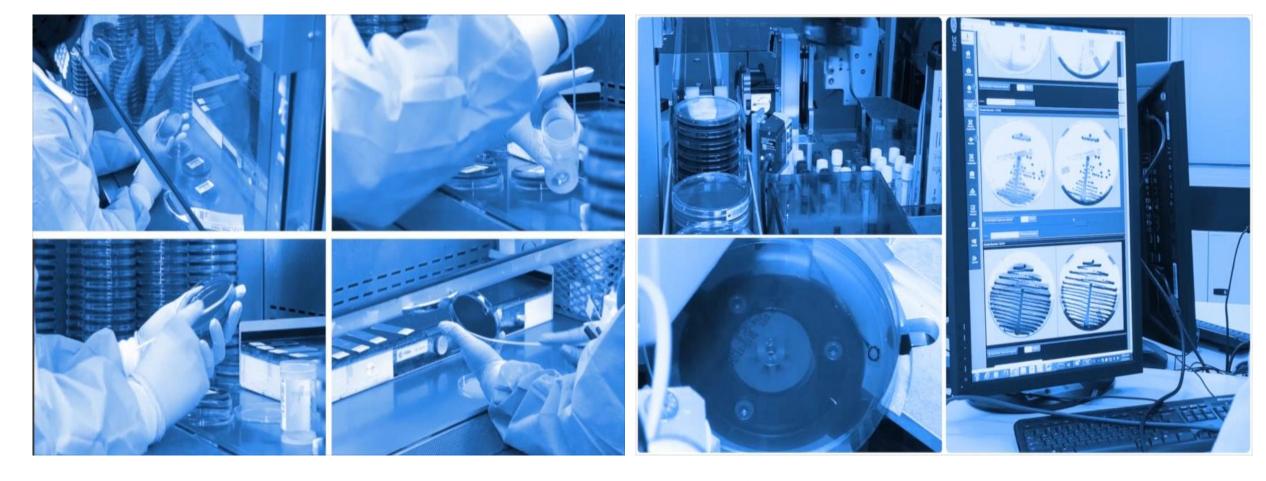
Total Laboratory Automation (TLA)

The beginning of great changes in the Bacteriology Lab

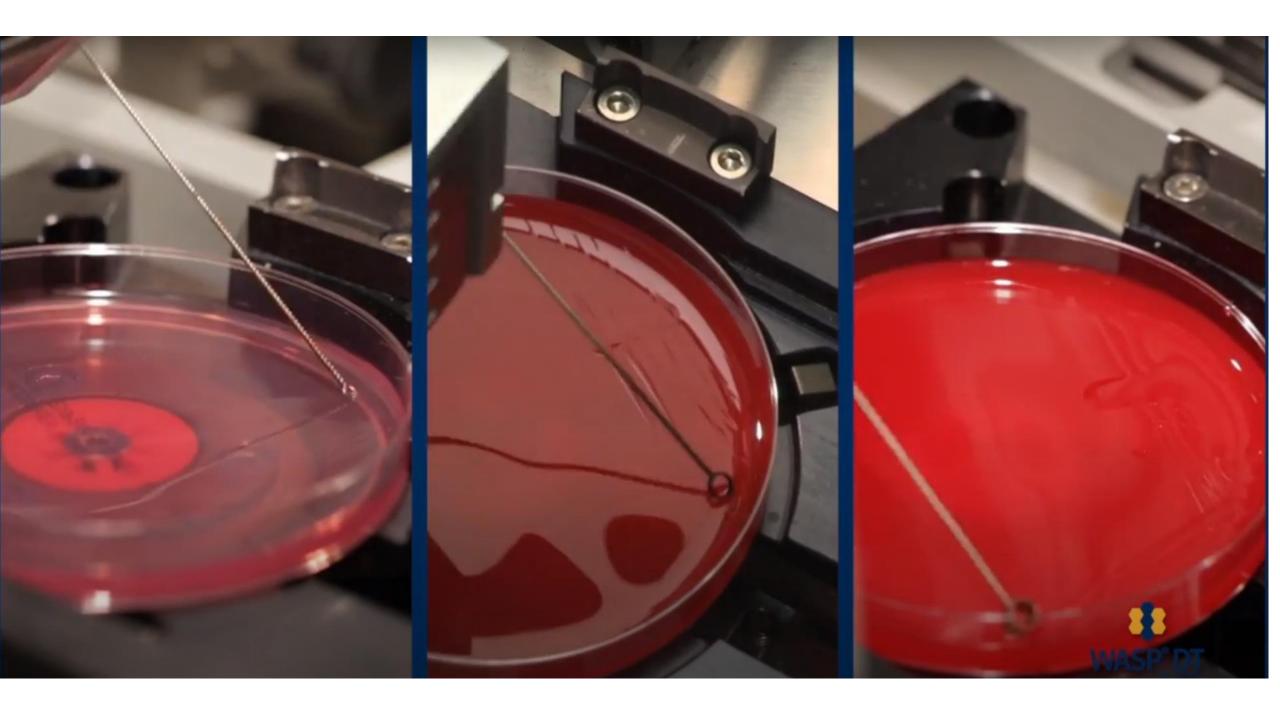
Progressive automation of Microbiology culture-based testing

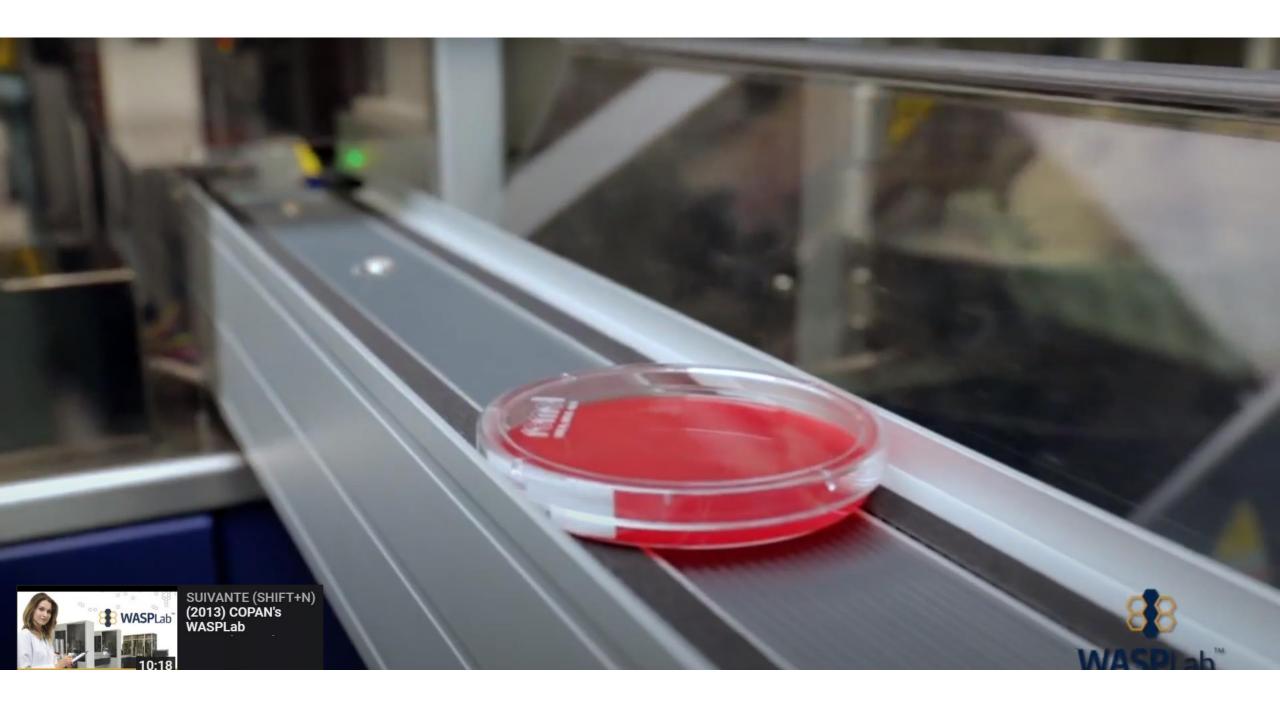
Preanalytical specimen management and processing: inoculation and steaking

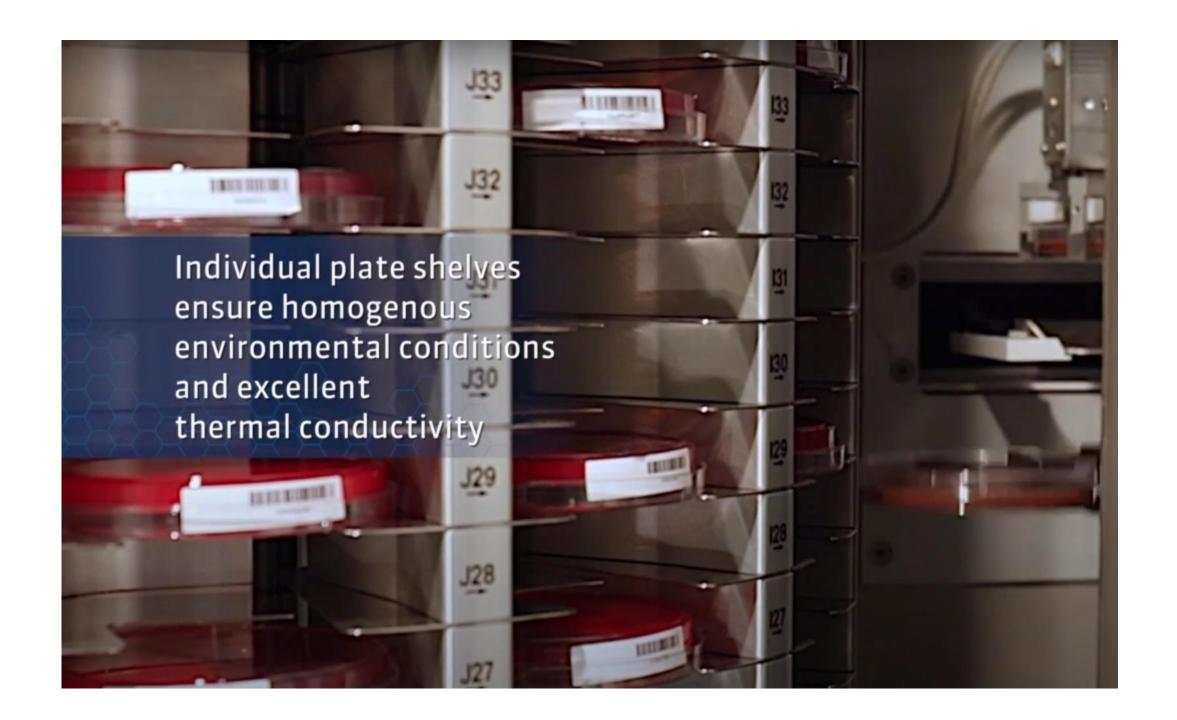
Total Laboratory Automation: clinical specimens processing, Incubation and culture media plates digital imaging

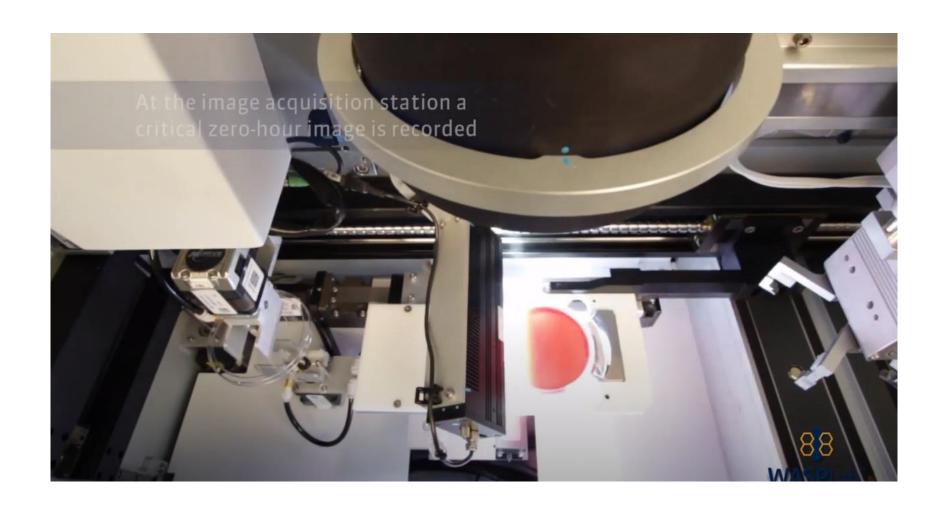

The BD Kiestra[™] InoqulA+ *2006

Copan WASP / *2006




Traditional Manual Process


Fully Automated Process



TLA: Project management and change management

Project initiation: defining needs

Project release: drafting tender

Phase release: Lab installation and IT System delivery (September 2018)

Routine launch of the first system (November 2018)

CURRENT 2016

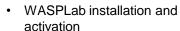
CURRENT 2017

1st SEMESTER 2018

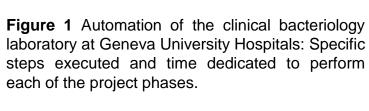
2nd SEMESTER 2018

2019

- Determination of the context and objectives
- Business plan
- Pre-study stage
- Project chart
- Project organization
- Validation of the dedicated budget


- Visits of five automated microbiology labs in Europe
- Upstream assessment and definition of needs
- Writing of a comprehensive tender
- Call for tender
- Tenders presentations
- Selection of an automated system
- Lab workflow analyses
- Official system order

- Architectural and technical adaptation of the laboratory
- Defining detailed WASPLab specifications
- LIS interface development


- System configuration
- Testing

System -2 for AST

- First validation projects
- Training of lab technologists

- Sequential implementation of sample types
- Sequential validation projects
- Completion of the training
- Change management
- Continuous process and workflow improvement

System-1 is composed of 2 WASP, 2 "CO2 (5%) atmosphere" and 1 "air atmosphere" incubators. **System-2** for AST is composed of 1 WASP, and 1/2 "air atmosphere" incubator.

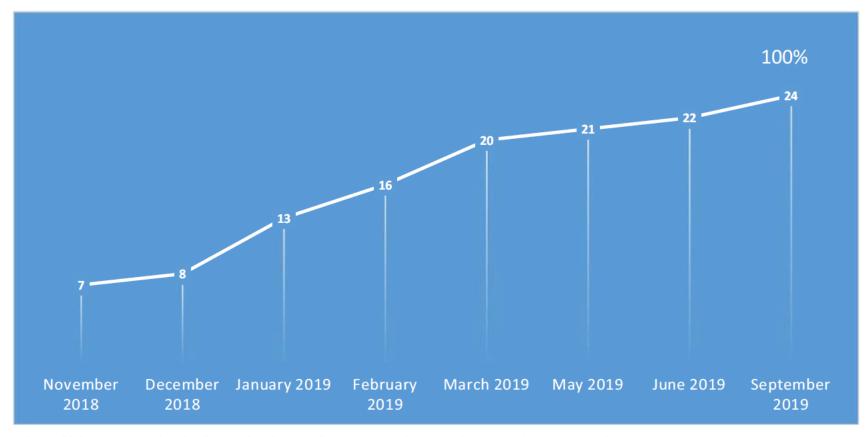
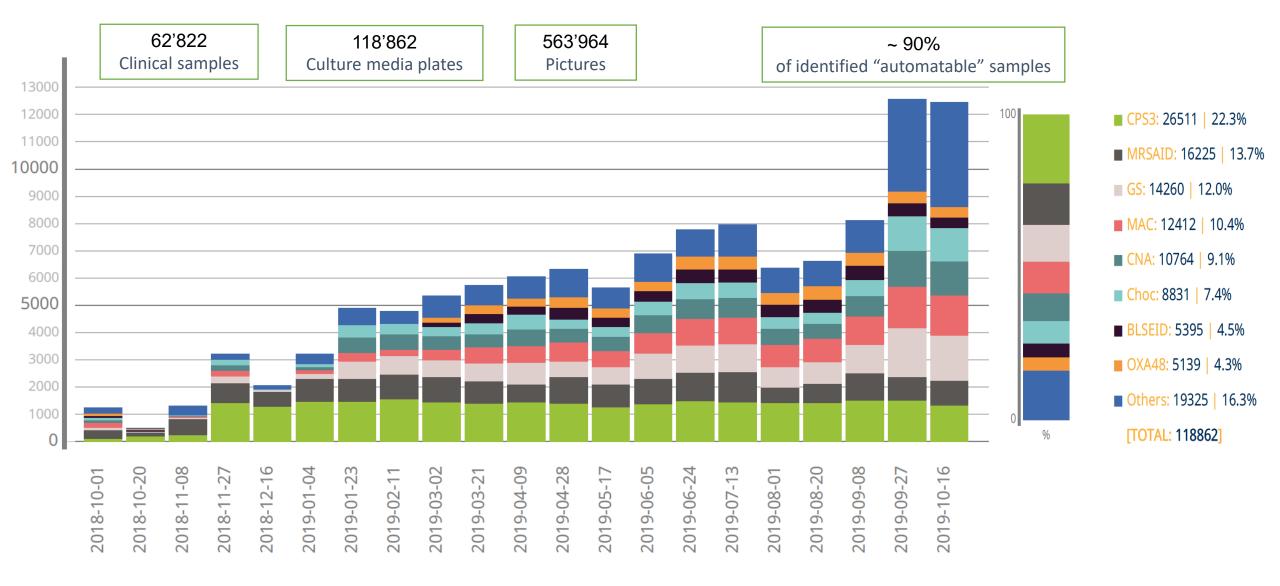
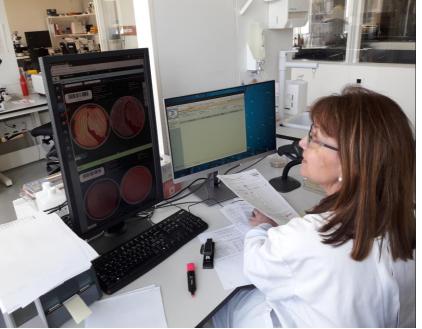




Fig. 2 Number of laboratory technologists trained to perform bacteriology analyses on the WASPLabTM

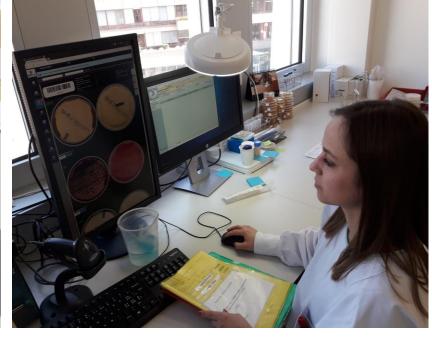
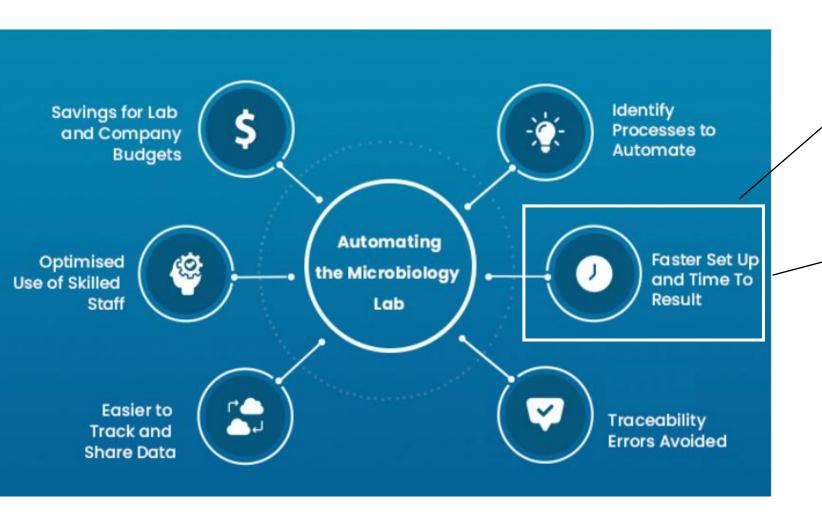


Figure 3 Sequential implementation on the WASPLabTM of the various sample types referred to the bacteriology laboratory at Geneva University Hospitals **between October 2018 and October 2019**

CPS3, CHROMID® CPS® Elite; MRSAID, CHROMID® MRSA; GS, Blood agar; MAC, MacConkey agar; CNA, CNA agar; Choc, Chocolate agar; BLSEID, CHROMID® ESBL; OXA48, CHROMID® OXA-48



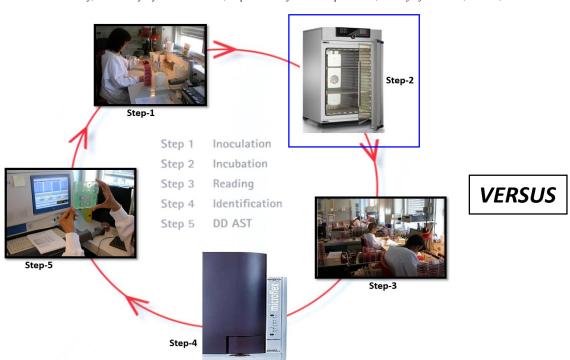
Laboratory efficiency improvement

TLA enables the reduction of the incubation times and allows earlier culture readings

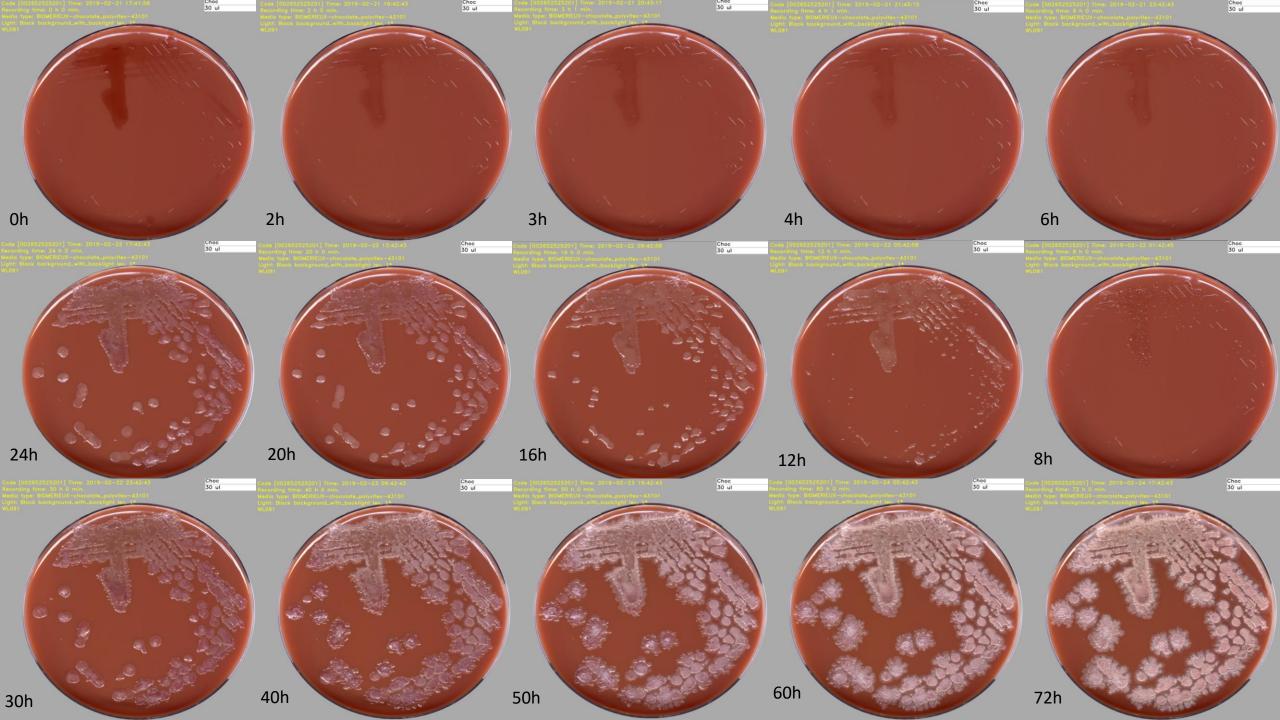
Fully Automated solution for AST by **Disk Diffusion**

Contents lists available at ScienceDirect

Clinical Microbiology and Infection


journal homepage: www.clinicalmicrobiologyandinfection.com

Original article


Copan WASPLab automation significantly reduces incubation times and allows earlier culture readings

A. Cherkaoui ^{1,*}, G. Renzi ¹, N. Vuilleumier ^{2,3}, J. Schrenzel ^{1,4}

- 1) Bacteriology Laboratory, Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland
- ²⁾ Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland
- ³⁾ Division of Laboratory Medicine, Department of Medical Specialities, Faculty of Medicine, Geneva, Switzerland
- ⁴⁾ Genomic Research Laboratory, Division of Infectious Diseases, Department of Medical Specialities, Faculty of Medicine, Geneva, Switzerland

Table 1: The incubation protocols, the culture media used for each sample type, and the number of samples included in the derivation set and in the independent validation set.

CPE: Carbapenemase-producing Enterobacteriaceae, MRSA: Methicillin-resistant *Staphylococcus aureus*, MSSA: Methicillin susceptible *Staphylococcus aureus*, ESBL: Extended-spectrum beta-lactamases; CNA agar: Colistin-Nalidixic Acid agar

Clinical sample types	WASP coupled to conventions manual diagnos		WASPLab			
	Culure media type	Routine incubation period	Number of samples included in the derivation set	Number of samples included in the independant validation set		
Urine specimens	CHROMID® CPS® Elite (BioMérieux, Geneva, Switzerland)	18h-24h and 48h	109	266		
Genital tract specimens	Blood agar, chocolate agar, CNA agar, and MacConkey agar	24h and 48h	92	189		
Non-sterile site specimens	Blood agar, chocolate agar, CNA agar, and MacConkey agar	24h, 48h and 72h	50	109		
Nasal and inguinal/perineal screening-ESwabs for MRSA and MSSA	CHROMID® MRSA (BioMérieux) and SaSelect Medium (BioRad)	18h-24h and 48h	148	181		
Rectal screening-ESwabs for ESBL- producer and CPE	counted to (*HROMI)* ()XA-48		84	66		

Table 7: Definitive incubation protocoles based on the derivation and validation studies

CPE: Carbapenemase-producing *Enterobacteriaceae*, MRSA: Methicillin-resistant *Staphylococcus aureus*, MSSA: Methicillin susceptible *Staphylococcus aureus*, ESBL: Extended-spectrum beta-lactamases

		Incubation time						
	Clinical samples type							
Routine incubation period		Picture at T0	Intermediate incubation time	Final incubation time				
18h-24h and 48h	Urine specimens	Yes	18h	24h				
24h and 48h	Genital tract specimens	Yes	16h	28h				
24h, 48h and 72h	Non-sterile site specimens	Yes	16h	28h				
18h-24h and 48h	Nasal and inguinal/perineal screening- ESwabs for MRSA and MSSA	Yes	No	18h				
18h-24h and 48h	Rectal screening-ESwabs for ESBL- producer and CPE	Yes	No	16h				

Automated Incubation and Digital Image Analysis of Chromogenic Media Using Copan WASPLab Enables Rapid Detection of Vancomycin-Resistant Enterococcus

Abdessalam Cherkaoui 1*, Gesuele Renzi 1, Yannick Charretier 2, Dominique S. Blanc 3,4, Nicolas Vuilleumier 5,6 and Jacques Schrenzel 1,2

¹ Bacteriology Laboratory, Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland, ² Genomic Research Laboratory, Division of Infectious Diseases, Department of Medical Specialities, Faculty of Medicine, Geneva, Switzerland, ³ Service of Hospital Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland, ⁴ Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland, ⁵ Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland, ⁶ Division of Laboratory Medicine, Department of Medical Specialities, Faculty of Medicine, Geneva, Switzerland

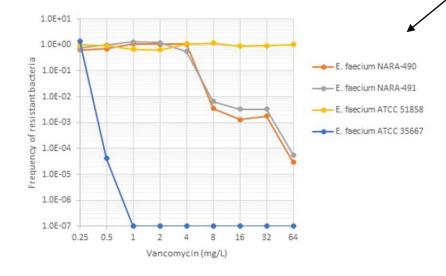
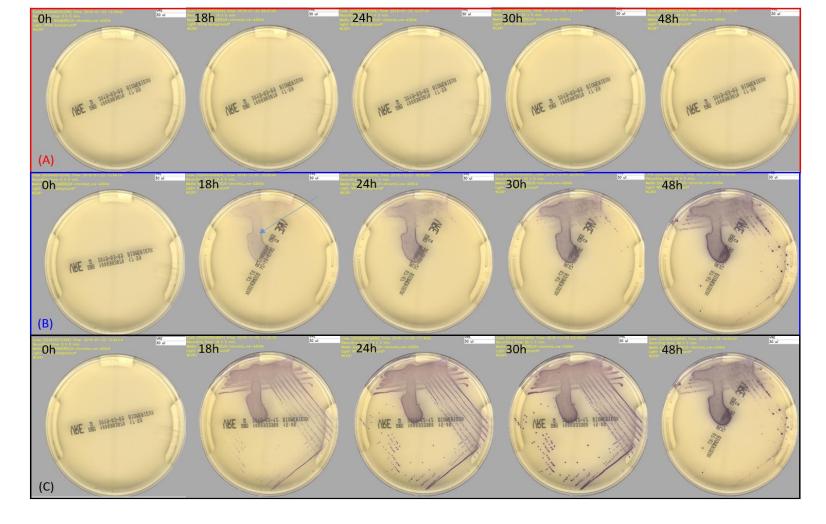


TABLE 1 | Characteristics of the Enterococcus faecium strains used in this study.

Strain ID, year of isolation, patient gender, patient age	VAN MIC by E-test	VAN MIC by broth micrcodilution	VAN (Disk diffusion 5 μg)	Growth on BHIA + 6 mg/l VAN	Teicoplanin MIC by E-test	Daptomycin MIC by E-test	Linezolid MIC by E-test
E. faecium VanB (NARA-89)	6 (R)	4 (S)	R*	+	0.38 (S)	1 (S)	0.75 (S)
E. faecium VanB (NARA-388)	6 (R)	16 (R)	R*	+	1.5 (S)	2 (S)	0.75 (S)
E. faecium VanB (NARA-490)	32 (R)**	64 (R)	R*	+	1 (S)	1.5 (S)	1 (S)
E. faecium VanB (NARA-491)	96 (R)**	>64 (R)	R*	+	1 (S)	2 (S)	1 (S)
E. faecium VanB (NARA-492)	4 (S)	8 (R)	R*	+	0.75 (S)	3 (S)	0.75 (S)
E. faecium (2018, Female, 85 y) HUG	256 (R)	>64 (R)	R	+	48 (R)	3 (S)	1 (S)
E. faecium (2018, Female, 68 y) HUG	256 (R)	>64 (R)	R	+	1.5 (S)	3 (S)	1 (S)
E. faeolum (2018, Female,	256 (R)	>64 (R)	R	+	12 (R)	2 (S)	0.75 (S)
E. faecium (2018, Female, <1 y) HUG	>256 (R)	>64 (R)	R	+	24 (R)	3 (S)	1 (S)
E. faecium (2018, Male, 30 y) HUG	32 (R)	64 (R)	R	+	1 (S)	2 (S)	1 (S)
E. faecium (2018, Male, <1 y) HUG	256 (R)	>64 (R)	R	+	16 (R)	3 (S)	1 (S)
E. faecium (2018, Male, 58 y) HUG	>256 (R)	>64 (R)	R	+	96 (R)	4 (S)	0.5 (S)
E. faecium (2018, Male, 84 y) HUG	128 (R)	>64 (R)	R	+	1 (S)	2 (S)	0.75 (S)
E. faecium (2018, Male, 90 y) HUG	48 (R)	>64 (R)	R	+	0.75 (S)	2 (S)	0.75 (S)
E. faecium (2018, Female, 7 y) HUG	>256 (R)	>64 (R)	R	+	64 (R)	8 (R)	0.75 (S)

VAN, Vancomycin; MIC, Minimum Inhibitory Concentration.


Daptomycin MICs were interpreted according to CLSI breakpoints.

^{*}Fuzzy zone edges, **Presence of a resistant heteropopulation.

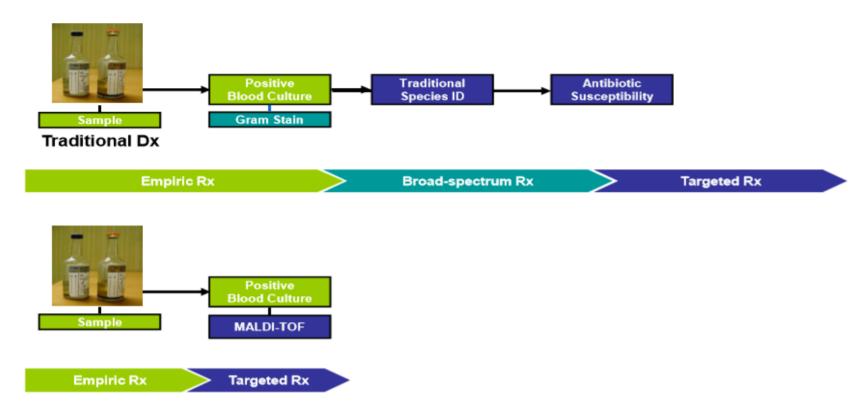
R, resistant; S, susceptible.

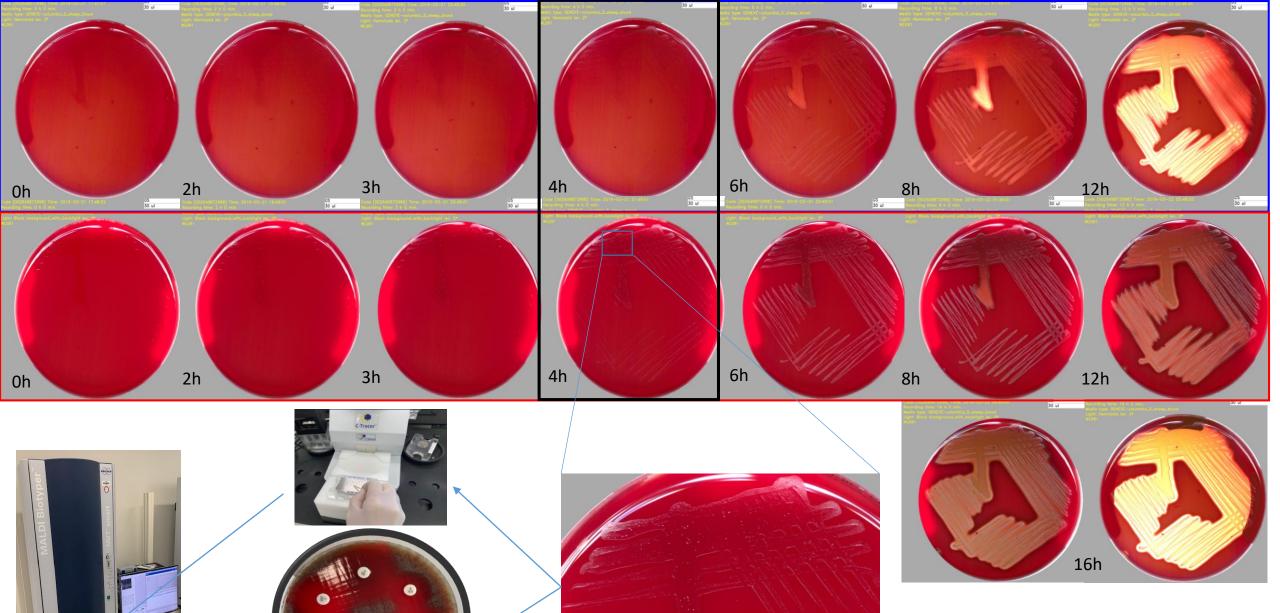
TABLE 2 | Results of the detection of the 15 vancomycin-resistant Enterococcus faecium strains on chromID® VRE at different incubation time points on the WASPLab compared to WASP-based automated inoculation coupled to conventional incubation and manual diagnostic.

Strain ID (vancomycin MIC)	Negative rectal ESwabs spiked by (CFU/ml)	Approx. cells inoculated on chromID [®] VRE (CFU)	WASP coupled incubation and r	WASPLab						
			Incubation t	Incubation time points						
		,	24 h	48 h	18 h	24 h	30 h	36 h	40 h	48 h
NARA-89 (4 mg/l)	3.00E + 07	1.00E + 06	+	+	+	+	+	+	+	+
	3.00E + 06	1.00E + 05	+	+	+	+	+	+	+	+
	3.00E + 05	1.00E + 04	+	+	+	+	+	+	+	+
	3.00E + 04	1.00E + 03	-	+	-	+	+	+	+	+
	3.00E + 03	1.00E + 02	-	+	-	+	+	+	+	+
	3.00E + 02	1.00E + 01	_	+	-	-	+	+	+	+
NARA-388 (16 mg/l)	3.00E + 07	1.00E + 06	+	+	+	+	+	+	+	+
	3.00E + 06	1.00E + 05	+	+	+	+	+	+	+	+
	3.00E + 05	1.00E + 04	+	+	+	+	+	+	+	+
	3.00E + 04	1.00E + 03	_	+	_	+	+	+	+	+
	3.00E + 03	1.00E + 02	_	+	_	+	+	+	+	+
	3.00E + 02	1.00E + 01	_	+	_	-	+	+	+	+
IARA-490 (64 mg/l)	3.00E + 07	1.00E + 06	+	+	+	+	+	+	+	+
	3.00E + 06	1.00E + 05	+	+	+	+	+	+	+	+
	3.00E + 05	1.00E + 04	_	+	+	+	+	+	+	+
	3.00E + 04	1.00E + 03	_	+	_	-	+	+	+	+
	3.00E + 03	1.00E + 02	_	+	_	_	+	+	+	+
	3.00E + 02	1.00E + 01	_	_	_	_		_	_	_
NARA-491 (96 mg/l)	3.00E + 07	1.00E + 06	+	+	+	+	+	+	+	+
	3.00E + 06	1.00E + 05	+	+	+	+	+	+	+	+
	3.00E + 05	1.00E + 04	+	+	+	+	+	+	+	+
	3.00E + 04	1.00E + 03	+	+	+	+	+	+	+	+
	3.00E + 03	1.00E + 02	_	+	_		+	+	+	+
	3.00E + 02	1.00E + 01	_	+	_	l _ l	+	+	+	+
IARA-492 (8 mg/l)	3.00E + 07	1.00E + 06	+	+	+	+	+	+	+	+
vert for (o mgr)	3.00E + 06	1.00E + 05	_	+	_	+	+	+	+	+
	3.00E + 05	1.00E + 04		+	_	+	+	+	+	+
	3.00E + 04	1.00E + 03	_	+	_	+	+	+	+	+
	3.00E + 03	1.00E + 02		+		+	+	+	+	+
	3.00E + 02	1.00E + 01	_	-	_	_	_	_	_	+
he 10 HUG VRE strains		1.00E + 06	+	+		+	+	+	+	+
MICs range 32 - >256					+					
ng/l)	3.00E + 06	1.00E + 05	+	+	+	+	+	+	+	+
	3.00E + 05	1.00E + 04	+	+	+	+	+	+	+	+
	3.00E + 04	1.00E + 03	+	+	+	+	+	+	+	+
	3.00E + 03 3.00E + 02	1.00E + 02 1.00E + 01	+	+	+	+ +	+	+	+	+

		Plating		Incubati	on times	
Clinical sample type	Solid culture media type	volume, μl	Picture at T0	First intermediate incubation time, hr	Second intermediate incubation time, hr	Final incubation time, hr
Rectal screening-Eswab for VRE	CHROMID® VRE (BioMérieux)	30	Yes	18	24	30

ORIGINAL ARTICLE




Rapid identification by MALDI-TOF/MS and antimicrobial disk diffusion susceptibility testing for positive blood cultures after a short incubation on the WASPLab

Abdessalam Cherkaoui 1 • Gesuele Renzi 1 • Nouria Azam 1 • Didier Schorderet 1 • Nicolas Vuilleumier 2,3 • Jacques Schrenzel 1,4

Received: 18 November 2019 / Accepted: 12 January 2020

Springer-Verlag GmbH Germany, part of Springer Nature 2020

Streptococcus pyogenes

 Table 1
 Minimal incubation times required for MALDI-TOF /MS-based species identification and AST by disk diffusion from short subcultures growing on solid media incubated on the Copan WASPLab

Microorganisms		Number of non- duplicate strains analyzed	Incubation time required for MALDITOF/MS-based species identification from short subcultures growing on solid media (hours)	Incubation time required for 0.5 McFarland suspension from short subcultures growing on solid media for AST by disk diffusion (hours)
Enterobacteriaceae	Escherichia coli	20	2	2
	Klebsiella pneumoniae	20	2	2
	Proteus mirabilis	20	2	2
	Salmonella	20	3	3
Non-fermenting Gram-negative bacilli	Pseudomonas aeruginosa	20	3	3
	Stenotrophomonas maltophilia	20	4	4
	Acinetobacter spp.	20	4	4
	Burkholderia cepacia	20	8	8
Gram-negative coccobacilli	Haemophilus influenzae	20	6	6
and othe Gram-negative bacilli	Pasteurella spp.	20	4	4
	Aeromonas spp.	20	3	3
Staphylococcus	Staphylococcus aureus	20	4	4
	Staphylococcus epidermidis	20	4	4
Streptococcus	Streptococcus pneumoniae	20	3	4
	Streptococcus agalactiae	20	3	4
	Streptococcus mitis	20	4	6
	Streptococcus pyogenes	20	3	4
Nutritionally deficient bacteria	Abiotrophia	20	6	8
	Granulicatella adiacens	20	6	8
Enterococcus	Enterococcus faecalis	20	3	3
	Enterococcus faecium	20	3	3
Gram-positive aerobic	Listeria monocytogenes	20	4	6
bacilli	Bacillus spp.	20	4	4
	Corynebacterium spp.	20	16	16
Yeast	Candida glabrata	20	6 (sufficent yeast biomass	
	Candida albicans	20	but no reliable identification)	

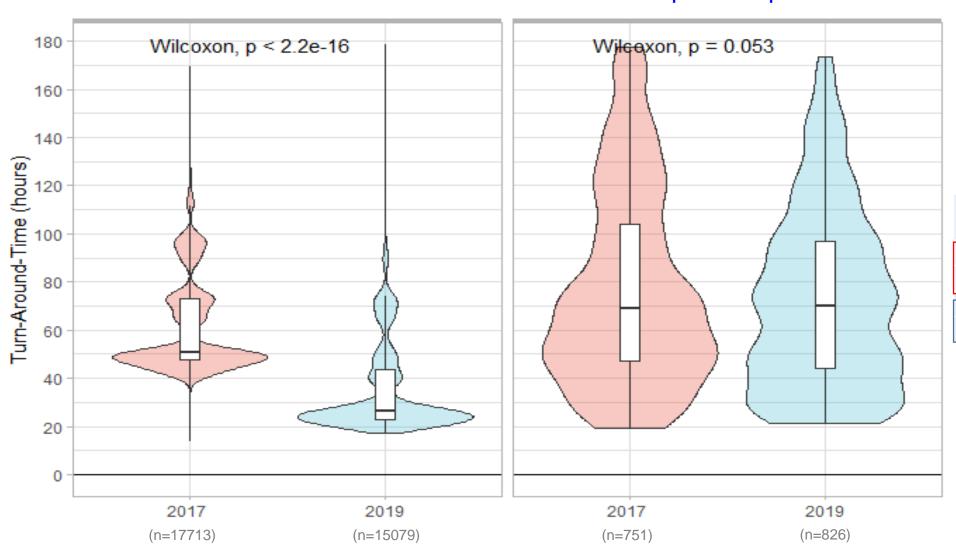
Impact of total laboratory automation on turnaround times for urine cultures and screening specimens for MRSA, ESBL, and VRE carriage: retrospective comparison with manual workflow

Abdessalam CHERKAOUI^{1*}, Gesuele RENZI¹, Romain MARTISCHANG¹, Stephan HARBARTH¹, Nicolas VUILLEUMIER¹, Jacques Schrenzel¹

Impact of total laboratory automation on turnaround-time for culture-based bacteriological testing

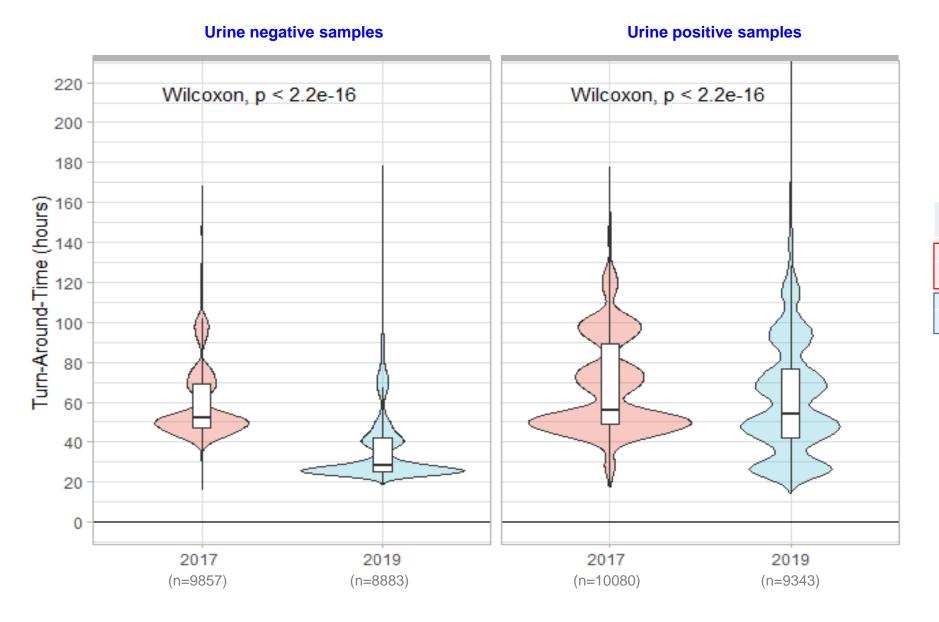
		Number of samples % of princluded in this study		% of positi	ositive samples		Time points for digital images acquisition on WASPLab				
Clinical sample type Solid culture media type 20	2017	2019	2017	2019	Plating volume, μl	Picture at T0	First time point, hr	Second time point, hr	Final time point, hr	Ref.	
Urine specimens	CHROMID® CPS® Elite (BioMérieux)	19937	18226	51% (10080/19937)	51% (9343/18226)	10	Yes	18	No	24	[1]
Nasal and inguinal/perineal screening-Eswab for MRSA	CHROMID® MRSA (BioMérieux)	18464	15905	4% (751/18464)	5% (826/15905)	30	Yes	No	No	18	[1]
Rectal screening- Eswab for ESBL	CHROMID® ESBL (BioMérieux)	7803	8643	27% (2140/7803)	25 % (2198/8643)	30	Yes	No	No	16	[1]
Rectal screening- Eswab for VRE	CHROMID® VRE (bioMérieux)	1973	7464	2% (45/1973)	0.8% (58/7464)	30	Yes	18	24	30	[2]

Table 1 Workup of bacterial culture, samples included in this study, and analysis parameters on the WASPLab based on previous studies.

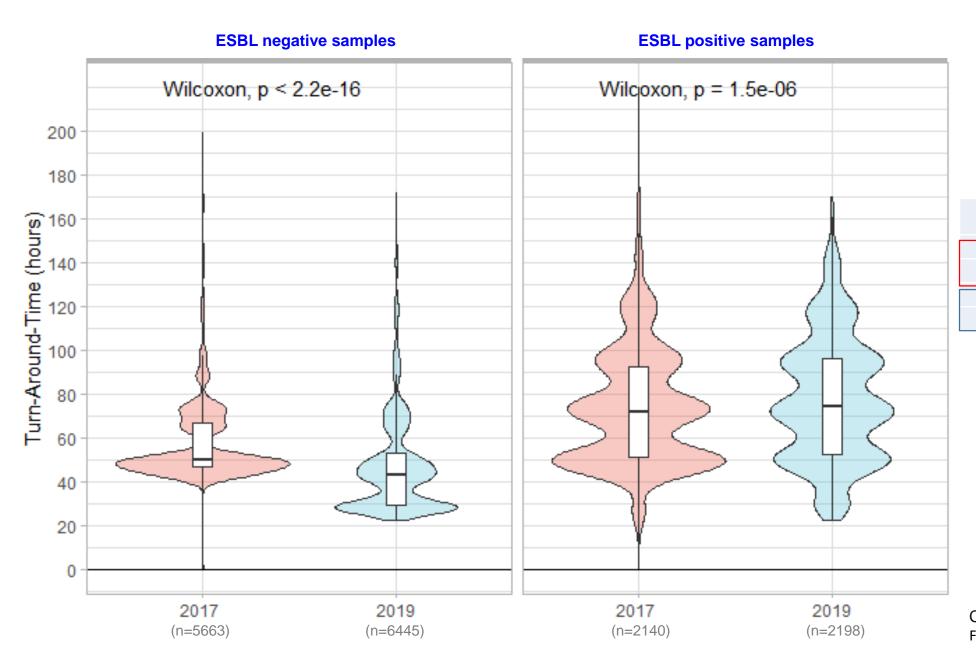

¹⁾ Cherkaoui et al. Clinical Microbiology and Infection April 2019

²⁾ Cherkaoui et al. Frontiers in Cellular and Infection Microbiology Nov. 2019

Turnaround time (from reception of samples to when the result is released to the ordering provider) for nasal and inguinal/perineal screening-ESwab for methicillin-resistant *Staphylococcus aureus* (MRSA) by culture

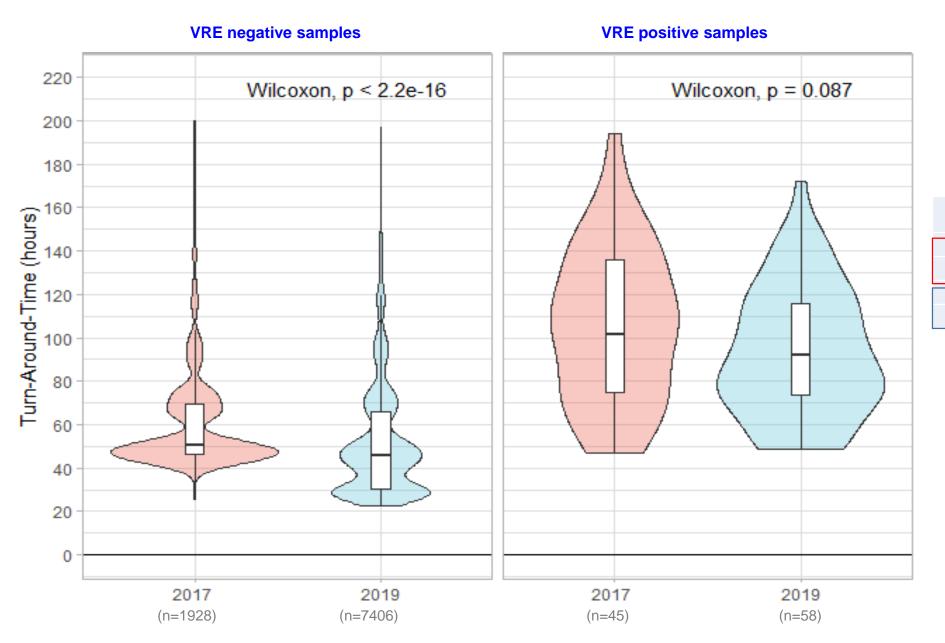

MRSA negative samples

MRSA positive samples


MRSA		Median TAT (hr)
Negative	2017	50.4
samples	2019	25.8
Positive	2017	70.1
samples	2019	70.3

Turnaround time (from reception of sample to when the result is released to the ordering provider) for a urine culture

Urine		Median TAT (hr)
Negative	2017	51.3
samples	2019	27.3
Positive	2017	54.8
samples	2019	52.5


Turnaround time (from reception of samples to when the result is released to the ordering provider) for rectal screening-ESwab for extended-spectrum beta-lactamases (**ESBLs**) by culture

ESBL		Median TAT (hr)
Negative	2017	49.8
samples	2019	42
Positive	2017	68
samples	2019	73.4

Cherkaoui et al. 2020 / Frontiers in Cellular and Infection Microbiology

Turnaround time (from reception of samples to when the result is released to the ordering provider) for rectal screening-ESwab for vancomycin-resistant *Enterococcus* (**VRE**) by culture

VRE		Median TAT (hr)
Negative	2017	50.6
samples	2019	45.7
Positive	2017	102
samples	2019	92.2

Cherkaoui et al. 2020 / Frontiers in Cellular and Infection Microbiology

TABLE 2 | Turnaround-times (from reception of samples to delivery of the culture results).

	Year	Urine	cultures (h)		ng for MRSA riage (h)		ing for ESBL riage (h)		ning for rriage (h)
Negative samples	2017	52.1	P < 0.001	50.7	P < 0.001	50.2	P < 0.001	50.6	P < 0.001
	2019	28.3		26.3		43.0		45.7	
Positive samples	2017	56.2	P < 0.001	69.2	P = 0.053	72.0	P < 0.001	102.0	P = 0.087
	2019	54.0		70.2		74.4		92.2	

Fully Automated solution for Antimicrobial Susceptibility Testing

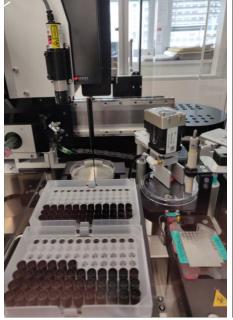
Performance of Fully Automated Antimicrobial Disk Diffusion Susceptibility Testing Using Copan WASP Colibri Coupled to the Radian In-Line Carousel and Expert System

DAbdessalam Cherkaoui, a Gesuele Renzi, a Nicolas Vuilleumier, b Jacques Schrenzela, c

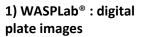
^aBacteriology Laboratory, Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland

^bDivision of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland

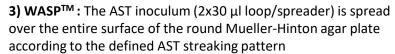
Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland

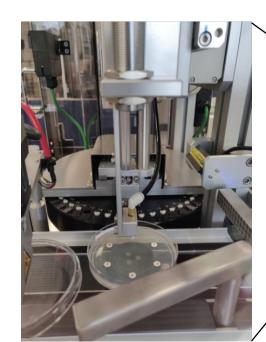

September 2021 Volume 59 Issue 9 e00777-21

Versus

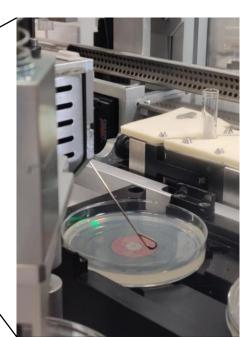


2) Colibri™

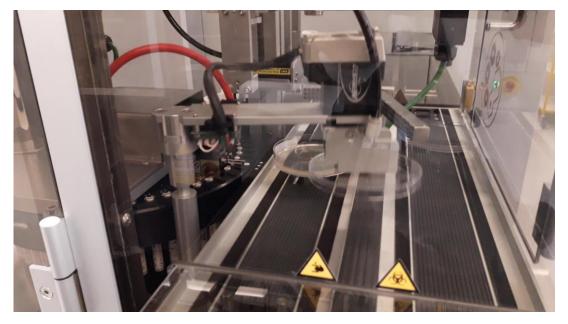

The AST inoculum is prepared in strict accordance with the manufacturer's instructions

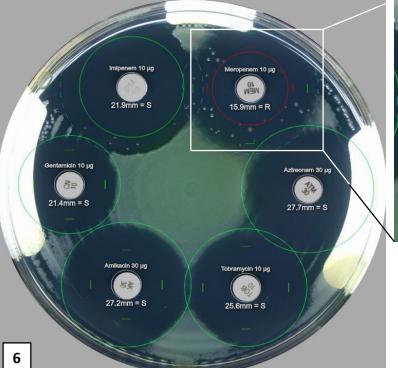

To capture the relevant heterogeneity profiles for the same strain, the minimum number of pickpoints required by the system to prepare the AST inoculum is defined as follows:

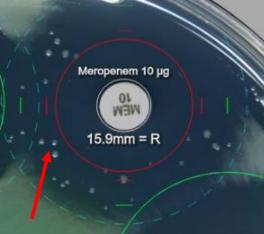
- Six different pickpoints for Gram positive bacteria
- Four different pickpoints for Gram negative bacteria

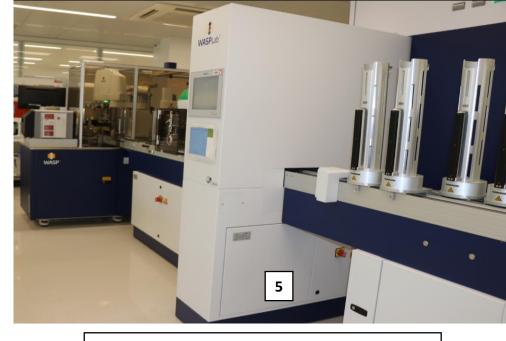


4) Radian™ in Line Carousel: distributes the antibiotic discs






Traditional Manual Process



Fully Automated Process

Heteroresistant populations (colonies visible within the inhibition halo, red arrow)

5) WASPLab® AST Line:

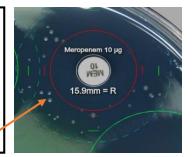
AST plates are digitized after 16 hours of incubation

6) RadianTM Expert System: Automatic reading of the inhibition zone diameters and AST interpretation for *Pseudomonas aeruginosa* strain

Figure-1 (Parts 1 to 6): Workflow of a fully automated solution for antimicrobial disk diffusion susceptibility testing (ColibriTM, WASPTM, RadianTM in-Line Carousel, and RadianTM Expert System)

ColibriTM prepares the inocula for 10 strains within 21 min

AST Line (WASPTM + Radian[™] in Line Carousel) executes AST for 10 strains (i.e. 40 media plates and 200 antibiotic discs) within 44 min


Antibiotics	Resistance rate % (no.	Categorical agreement between the	Colibri [™] coupled to Radian [™]		VITEK 2 [®] system	
	of isolates)	compared methods (%)	Very major error	Major error	Very major error	Major error
Enterobacterales species (n	=292)					
Ampicillin	66 (193)	100				
Amoxicillin/Clavulanate	37 (108)	99.7		1		
Piperacillin/Tazobactam	21 (62)	98.6		2	2	
Cefuroxime	25 (73)	100				
Ceftazidime	22 (63)	99.3		2		
Ceftriaxone	22 (63)	99.3		2		
Cefepime	19 (56)	99		1	3	
lmipenem	6 (18)	98.6		2	1	1
Meropenem	7 (19)	99.7			1	
Ertapenem	17 (49)	97.6		3	4	
Amikacin	7 (19)	99.7			1	
Gentamicin	15 (45)	99.7		1		
Norfloxacin	35 (101)	100				
Ciprofloxacin	29 (85)	99.3				2
Co-trimoxazole	35 (103)	99.7		1		
Pseudomonas aeruginosa (n=198)					
Piperacillin	43 (85)	94	1		11 (incl. 5*)	
Piperacillin/Tazobactam	33 (65)	98.5			1	2
Ceftazidime	28 (56)	99.5		1		
Cefepime	28 (55)	99		1	1*	
lmipenem	30 (60)	98.5	1		2*	
Meropenem	27 (53)	98			4*	
Amikacin	24 (47)	99.5				1
Gentamicin	21 (42)	99				2
Tobramycin	23 (46)	100				
Ciprofloxacin	25 (49)	99.5				1
Levofloxacin	31 (61)	99			2 (incl. 1*)	
*Presence of colonies withir	n the inhibition	halo (heteroresis	tance detected	d only by disk c	liffusion)	

The overall categorical agreements between the two compared methods

99.3% (4350/4380; 95% CI 99% to 99.5%)

98.6% (2147/2178; 95% CI 98.0% to 99.0%)

The most important cause of the very major errors encountered on the Vitek 2 for *P. aeruginosa* (62%, 13/21) was related to the presence of heteroresistant populations

Antibiotics ra	Resistance rate % (no.	Categorical agreement between the compared methods (%)	Colibri [™] coupled to Radian [™]		VITEK 2 [®] system	
	of isolates)		Very major error	Major error	Very major error	Major error
Staphylococcus spp. (n=185 including 107	Staphylococcus d	ureus and 78	Coagulase-neg	ative staphyl	ococci)
Cefoxitine	32 (60)	100				
Gentamicin	21 (39)	100				
Ciprofloxacin	32 (60)	99.5			1	
Clindamycin	29 (53)	100				
Erythromycin	34 (62)	100				
Fusidic acid	26 (48)	100				
Co-trimoxazole	23 (42)	94.6			10	
Rifampicin	3 (6)	100				
Tigecyclin	0	100				
Linezolid	0	100				
Enterococcus spp. (n=	43 including 38 Enter	ococcus faecalis	and 5 Entero	coccus faecium)	
Ampicillin	9 (4)	97.7		1		
Imipenem	9 (4)	97.7			1	
Gentamicin	9* (4)	100				
Linezolid	0	100				
Teicoplanin	0	100				
Vancomycin	0	100				
Tigecycline	0	100				
Nitrofurantoin	0**	100				
*High level of gentami	icin resistance / **on	ly Enterococcus f	aecalis isolate	s were included	k	

The overall categorical agreements between the two compared methods

99.4% (1,839/1,850; 95% CI 98.9% to 99.7%)

These very major errors were reported only for coagulase-negative staphylococci (one *S. hominis* and nine *S. epidermidis*)

No strictly explication has been found

99.4% (342/344; 95% CI 97.9% to 99.8%)

	Colibri coupled to Radian AST line		VITEK 2 system		
Isolates tested (no. of strains)	Cost	(EUR)	Cost (EUR)		
	Avg per isolate	Total	Avg per isolate	Total	
Enterobacterales (292)	4.6	1343.2	8	2336	
Pseudomonas aeruginosa (198)	3.18	629.6	8	1584	
Staphylococcus spp. (185)	3.05	564.3	8	1480	
Enterococcus spp. (43)	2.79	120	8	344	
Total		2657.1		5744	

Table-3: Consumable costs estimate of the AST performed by the two compared methods

For AST by Colibri coupled to Radian AST line, we included only the costs of the media plates and of the specific panel of antibiotic discs tested

For the AST by VITEK 2, we included only the costs of the AST cards

Conclusions

TABLE 3 Hallmarks of the phenotypic AST methods compared in this study

Colibri coupled to Radian	VITEK 2 system
Fully automated method	Semiautomated method
Easy to change the antibiotics tested	
Greatest flexibility and cost-effectiveness	Less flexible and more expensive (susceptibility cards)
Reliable for detecting heteroresistant subpopulations	Low sensitivity for the detection of heteroresistant subpopulations
Easy to see test failures (e.g., mixed inoculum)	Purity check plates are mandatory (more consumable and additional workload)
More accurate detection of new resistance mechanisms	Problems in detecting some patterns of carbapenemases (e.g., OXA-48-like producers)
Applicable to many fastidious organisms	The range of drug dilution is usually very narrow
Inability to provide precise data regarding the level of an organism's resistance or susceptibility	Provides a good approximation of the MIC

By implementing the full automation of AST process in a stepwise manner (IT development, validation of the performances, staff training, and then routine implementation) we have become able to reach 97% (100 to 150 AST panels per day / 350 to 420 plates) of our routine AST panels performed by the Colibri coupled to the Radian within 5 months.

Clinical impact of TLA ... ?

Shortening the TAT could positively improve the patient's outcome and the infection control measures. By providing accurate and earlier results to the physicians, one could contribute to optimize therapeutic decisions.

However, the real impact of shorter TAT on medical decisions is strongly linked to the responsiveness of the medical teams when the results are available and properly communicated on the laboratory information system.

• CHROMagar™ MRSA

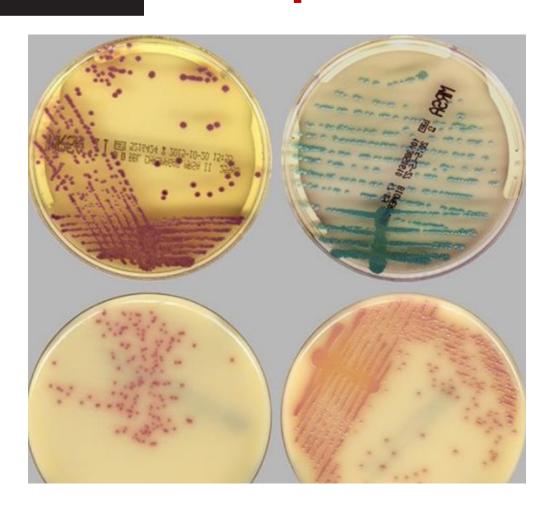
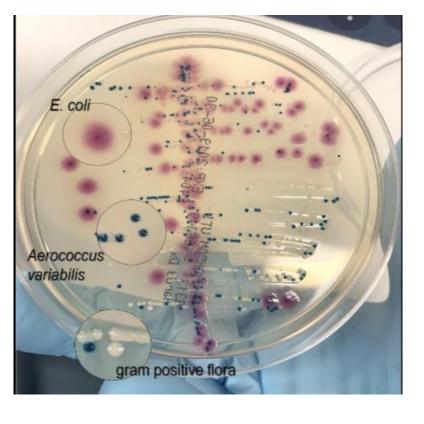

Perspectives --- 202...

Plate Reading


- Methicillin Resistant Staphylococcus aureus (MRSA) → rose to mauve
- Methicillin Susceptible Staphylococcus aureus (MSSA) → inhibited
- Other bacteria
- → blue, colourless or inhibited

Copan Diagnosis, Inc. www. Copanusa.com

Merci pour votre attention