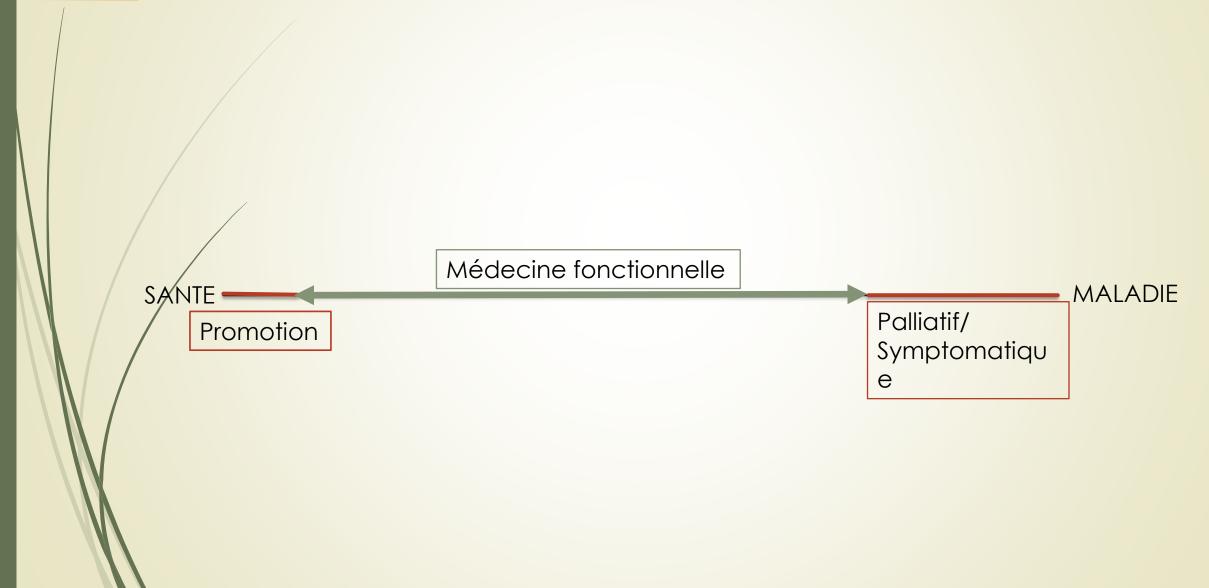
Qu'est-ce que la biologie fonctionnelle?

Dre Nathalie Favre

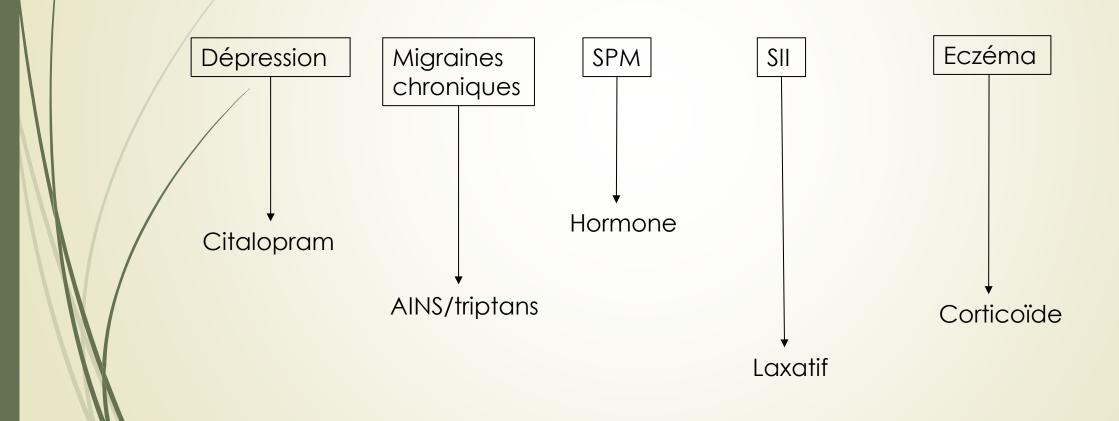
FMH médecine interne générale

Médecine fonctionnelle, phytothérapie, micronutrition



Plan

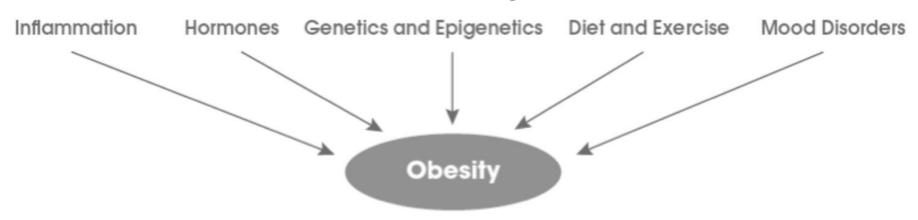
- 1. Médecine fonctionnelle
- 2. Biologie fonctionnelle
- 3. Marqueurs principaux en biologie fonctionnelle
 - 1. Micronutriments
 - 2. Inflammation chronique
 - 3. Insulino-résistance
 - 4. Microbiote
 - 5. Hormones du stress


1. Médecine fonctionnelle

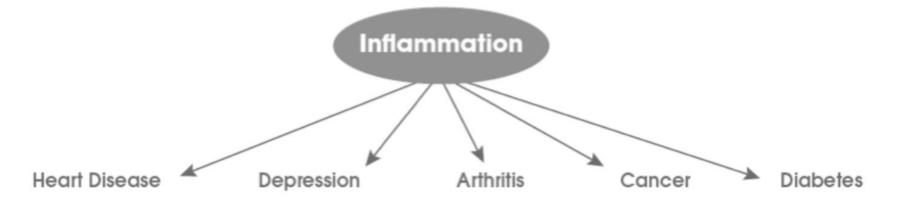
Continuum de la santé des maladies chroniques

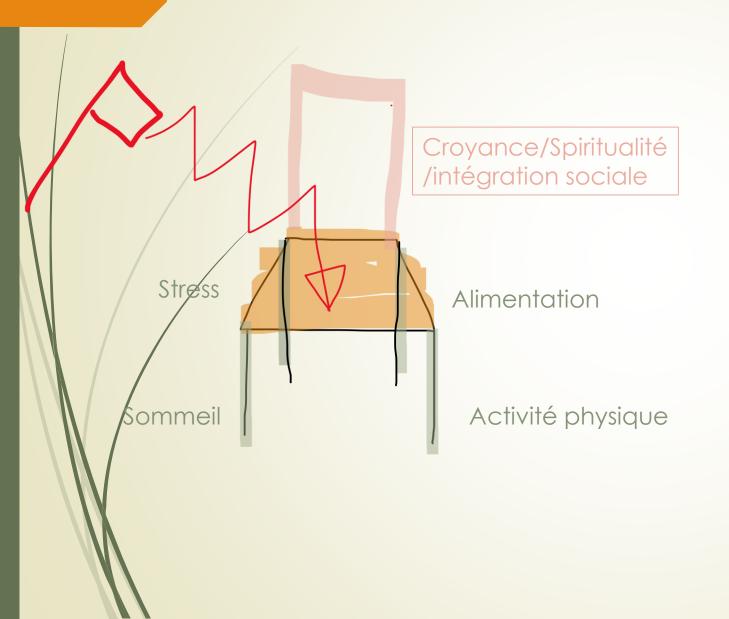
Vision de la médecine CONVENTIONNELLE

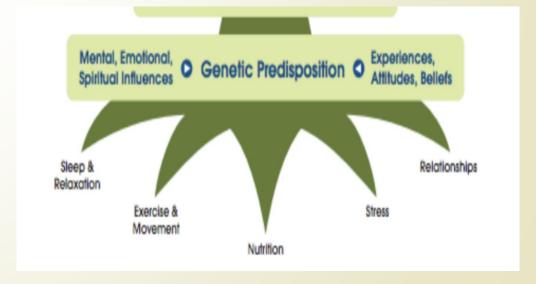
Un modèle basé sur le diagnostic et le traitement symptomatique de la maladie



Vision de la médecine FONCTIONNELLE


Un modèle basé sur l'optimisation de la santé


One Condition—Many Imbalances


One Imbalance—Many Conditions

BASE DE LA SANTE

= mode de vie

2. Biologie fonctionnelle

Si la médecine fonctionnelle est une nouvelle grille de lecture de la santé, alors la biologie fonctionnelle est l'outil d'analyse qui permet d'objectiver ces déséquilibres.

Normes de références classiques

Les valeurs de référence sont établies sur une population statistique. Elles reflètent une distribution gaussienne dans une population donnée, sur un large échantillon de patients considérés comme en bonne santé.

Uniquement les valeurs en dehors des **limites** sont considérées comme **pathologiques**.

Normes de références fonctionnelles

La biologie fonctionnelle définit des **plages optimales**, basées sur la physiologie et les études cliniques.

Permet d'identifier des déséquilibres avant qu'ils n'évoluent en pathologie.

Là où la médecine classique **fixe des seuils de pathologie**, la biologie fonctionnelle cherche à **optimiser** les biomarqueurs pour une santé optimale. L'une des principales différences entre la médecine fonctionnelle et la médecine conventionnelle réside dans la façon dont elles interprètent les résultats biologiques et dans le moment où une intervention est jugée nécessaire.

SANTE Déséquilibres Maladies MALADIE

En médecine conventionnelle, les valeurs en dehors des limites de référence sont considérées comme pathologiques, ce qui déclenche un diagnostic et un traitement.

En revanche, tant qu'un biomarqueur reste dans l'intervalle de référence, même s'il est sous-optimal, aucune prise en charge n'est proposée.

The personne peut être **symptomatique** et pourtant ne recevoir aucun traitement tant qu'elle ne dépasse pas ces seuils.

La biologie fonctionnelle identifie les déséquilibres précocement, permettant d'intervenir avant qu'une pathologie se déclare.

La biologie fonctionnelle ne s'oppose pas à la biologie classique, mais elle la complète et l'affine.

Exemples

Vitamine D (25-OH)

Norme conventionnelle: >30 ng/ml

Plage optimale: >50ng/ml

Une Évolution déjà présente en Médecine Conventionnelle!

Initialement, le diabète était défini uniquement par une glycémie à jeun augmentée. Aujourd'hui, on reconnaît que des valeurs d'HbA1c entre 5,7% et 6,4% correspondent à un état de pré-diabète.

Endocrinologie			
TSH (Sérum)	SG 2,48	0.27 - 4.20	mUI/L
T4 libre (Sérum)	SG 13,4	12.0 - 22.0	pmol/L
T3 libre (Sérum)	SG 4,0	3.1 - 6.8	pmol/L

3. Marqueurs principaux en biologie fonctionnelle

3.1 Micronutriments

- Pourquoi le dosage des micronutriments est essentiel ?
- Les micronutriments (vitamines, minéraux, acides gras)
 sont indispensables aux réactions enzymatiques et aux équilibres biologiques.
- Une carence ou un excès peut altérer le métabolisme
- Les signes cliniques ne suffisent pas pour établir un bilan précis des réserves en micronutriments
- La médecine conventionnelle ne recherche souvent que les carences engendrant une maladie
- La biologie fonctionnelle cherche à optimiser les niveaux pour un fonctionnement cellulaire optimal.

Vitamines

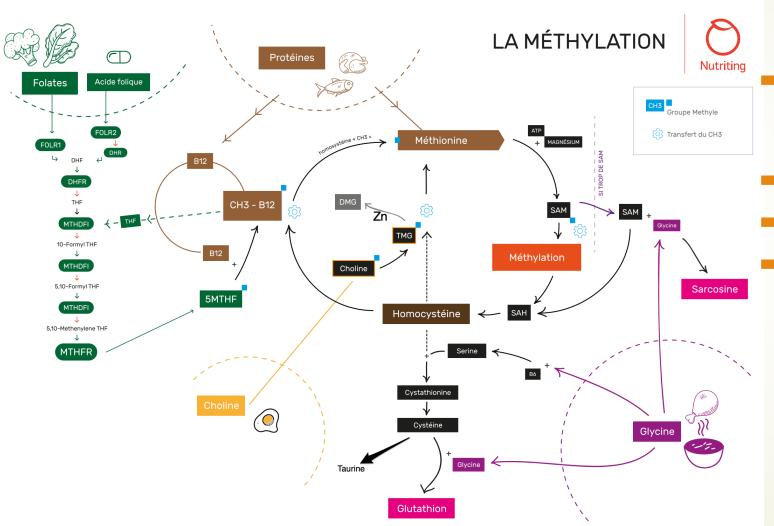
Vitamine D (25(OH)D) :

- Norme conventionnelle : >30 ng/ml
- Plage optimale : >50ng/ml
- Rôle: Immunité, inflammation, santé osseuse et cardiovasculaire, rôle en neuropsychiatrie
- Carence fréquente, surtout en hiver
- Dosage non remboursée par AOS

Exemple Madame S.

Hématologie				
Folates érythrocytaires	SG	1638 ²	>=340	nmol/l
2. >905 nmol/L femmes en âge de procréer				
Chimie				
Cuivre		17.2	10.7 - 26.6	μmol/l
Magnésium érythrocytaire		2.58	1.65 - 2.65	mmol/l
Sélénium	SG	1.143	0.94 - 1.77	μmol/l
3. BAT (SUVA): < 2.00 µmol/l Pour définitions, voir risch.ch				
Ac anti-LDL oxydés	SG	184	< 949	U/I
Vitamines				
Vitamine A (Rétinol)	SG	1.74 4	1.05 - 2.09	μmol/l
4. pénurie prononcée: < 0.35				
pénurie naissante: 0.35 - 0.66				
toxique: > 4.89				
Holotranscobalamine (Vit. B12 activée)	SG	49.3 * ⁵	>60.0	pmol/l
5. < 37.5: Déficit en vitamine B12 probable				
37.5 - 60.0: Zone grise, le dosage de l'acide				
méthylmalonique comme marqueur d'un déficit				
intracellulaire en vitamine B12 est conseillé				
> 60.0: Déficit en vitamine B12 improbable				
Homocystéine	SG	18.1 *	< 12	μmol/l

Génétique médicale

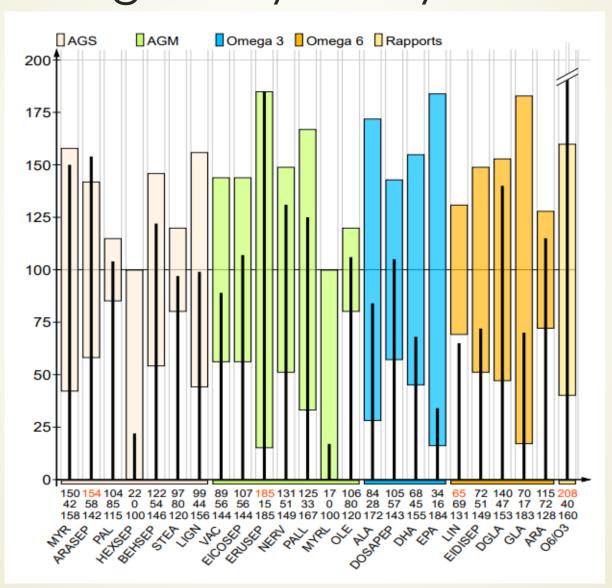

Méthylènetétrahydrofolate réductase (MTHFR) polymorphisme C677T type sauvage

rs18011339; NM_005957.5 :c.665C>T p.(Ala222Val)

A1298C ▲ homozygote mutante

rs1801131; NM_005957.5:c.1286A>C p.(Glu429Ala)

Vitamines du Groupe B :


- **B9 (folate) erythrocytaire:** dosage plasmatique fluctue avec alimentation
- B12 active (holotranscobalamine)
- **Homocystéine**
- Gène MTHFR

Minéraux

Magnésium

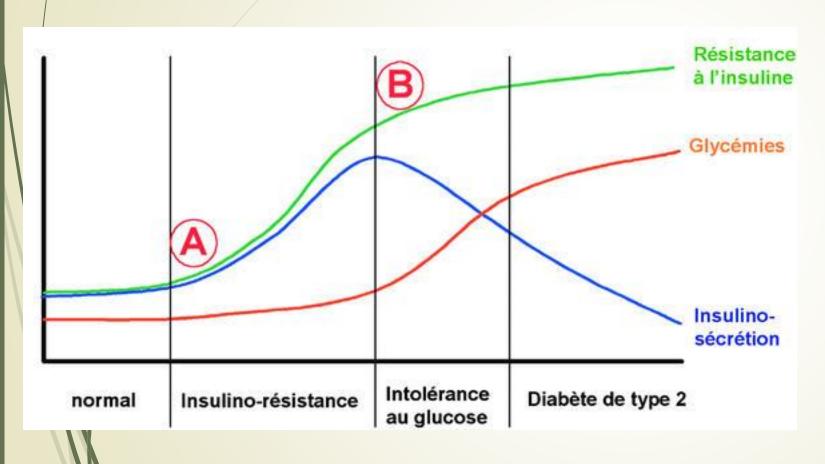
- Rôle: relaxation musculaire, régulation stress, production d'énergie
- Stock:
 - 60% stocké dans les os
 - 39% dans les cellules (muscles, foie, cerveau, erythrocytes)
 - Seulement ~1% dans le plasma sanguin
- Dosage plasmatique reflète mal les stocks intracellulaires
- Dosage érythrocytaire plus pertinent, à corréler au contexte
- Zinc, Cuivre, Sélénium
- lode: urines

Acides gras érythrocytaires

- Reflètent apport alimentaire en acides gras des 3-4 derniers mois
- Teneur en Acides Gras Saturés
- Rapport omega-6/omega-3 et index omega-3

Acides gras polyinsaturés Oméga 6						
Acide linoléique (LIN)	10.2	%	(7.3-13.9)			
Acide γ-linolénique (GLA)	0.04	%	(0.02-0.21)			
Acide Dihomogammalinolénique (DGLA)	2.76	%	(0.68-2.23)			
Acide arachidonique (ARA)	14.3	%	(10.4-18.6)			
Oméga-6/Oméga-3 (O6/O3)	▲ 5.4		(1.0-4.0)			
Oméga-3-index						
EPA et DHA (EPA/DHA)	5.1	%	(<4.0) faible cardioprotection			
			(>8) valeur cible			

3.2 Inflammation chronique

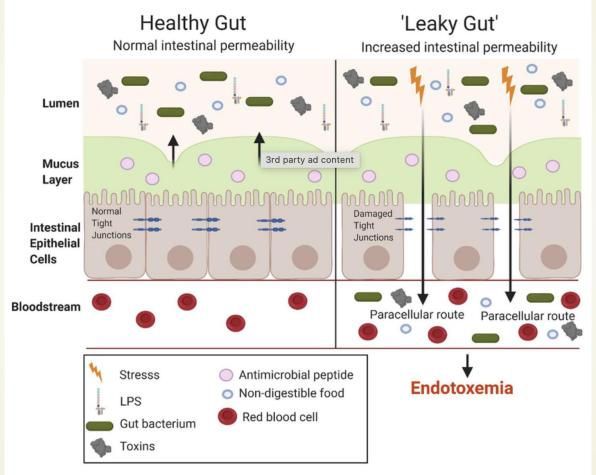

CRP vs CRP ultra-sensible (CRPus):

- Même biomarqueur, mais techniques d'analyse différentes
- CRP standard: détecte une inflammation aiguë ou une infection

CRPus:

- Détecte une inflammation chronique de bas grade
- Valeurs:
 - < 1 mg/L → faible risque cardiovasculaire
 </p>
 - 1 3 mg/L → inflammation légère, risque modéré
 - > 3 mg/L → inflammation chronique, risque cardiovasculaire accru

3.3 Insulino-résistance

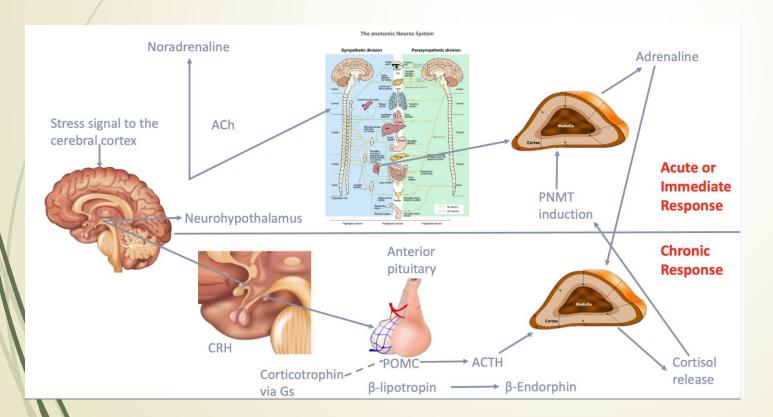

- Biologie conventionnelle: glycémie à jeûn, HbA1c
- Biologie fonctionnelle:
 - Insulinémie
 - HOMA = Glycémie à jeun x Insulinémie à jeun / 22.5

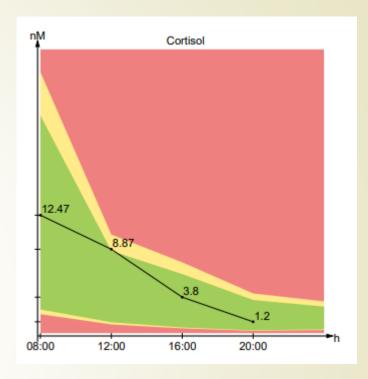
	Résultat	Unité	Référence
Selles			
Consistance	pâteuse		
Teneur en eau	78.0	g/100g	(68.5-82.3)
Protéines	1.1	g/100g	(<1.5)
Amidon	7.7	g/100g	(2.6-10.6)
Teneur en sucre	2.0	g/100g	(<2.3)
Graisse	2.7	g/100g	(<5.2)
Graidad	2.7	grioog	(30.2)
Screening intéstinale			
Élastase pancréatique 1	>500	μg/g	(>200)
Calprotectine 1	<19.5	mg/kg	(<50.0)
Calprotectine	410.0	mgmg	(30.0)
Flore intestinale			
pH ¹	▲ 6.8		(5.5-6.5)
α-1-antitrypsine ¹	14.8	mg/dl	(<27.5)
Acides biliaires	3.15	µmol/g	(0.84-6.55)
Ajustement des valeurs de réfé		pinong	(0.01 0.00)
Acides biliaires 1	▲ 13.47	µmol/g	(0.46-9.96)
IgA sécrétoire 1	707	µg/ml	(510-2040)
Protéine éosinophile X 1	▲ 1605	μg/l	(<440)
Bactéries aérobies			
E. coli	▲ 4x 10^8	CFU/g	(<1x 10^6-9x
			10^7)
Proteus sp.	<1x 10^4	CFU/g	(<1x 10^4)
Klebsiella sp.	<1x 10^4	CFU/g	(<1x 10^4)
Enterobacter sp.	<1x 10^4	CFU/g	(<1x 10^4)
/ Citrobacter sp.	<1x 10^4	CFU/g	(<1x 10^4)
Pseudomonas sp.	<1x 10^4	CFU/g	(<1x 10^4)
Enterococcus sp.	▲ 3x 10^8	CFU/g	(1x 10^6-9x
			10^7)
Bactéries anaérobies		05111	// /010.0
Bacteroides sp.	▼ 2x 10^8	CFU/g	(1x 10^9-9x
Diff dala antonium an	04040	OFILI.	10^11)
Bifidobacterium sp.	6x 10^9	CFU/g	(1x 10^9-9x
Lastabasillus an	▼ <1x 10^5	CELVa	10^11) (1x 10^5-9x
Lactobacillus sp.	V <1X 10~5	CFU/g	(1X 10°5-9X 10^7)
Clostridium sp.	<1x 10^5	CFU/g	
		CFU/g	(<1x 10^6)
C. difficile	négatif		
Détection quantitative de fungi			
Candida albicans	<1x 10^3	CFU/g	(<1x 10^3)
Candida apicaris	<1x 10 3	CFU/g	(<1x 10^3)
Geotrichum sp.	▲ 2x 10^6	CFU/g	(<1x 10 3)
Moisissure	négatif	O. Org	(11/10/0)

3.4 Microbiote

- Evaluation du métabolisme intestinal
- Analyse équilibre du microbiote
- Présence de levure ou parasite
- Métabolites du microbiote (AGCC)

Hyperperméabilité intestinale




«Role of Metabolic Endotoxemia in Systemic Inflammation and Potential Interventions»; S. Mohammad, C. Thiemermann; Frontiers in Immunology; 2021

Perméabilité intestinale: LBP sanguin, alpha-1-antitrypsine dans les selles

3.5 Hormones du stress

- Cortisol
 - CAR
 - 4-5 points sur la journée
 - Salivaire

Conclusion

- La biologie fonctionnelle est un outil puissant pour comprendre et optimiser la santé
- Elle permet d'anticiper les maladies et améliorer la qualité de vie des patients
- Elle s'adapte aux besoins individuels
- L'objectif n'est pas de remplacer la biologie conventionnelle, mais de l'affiner et la compléter